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Problem. Let Ω ⊂ RN , N ≥ 2, be a smooth bounded domain.

Consider

(Pλ)


−∆u = λ(m(x)u− a(x)|u|p−2u) in Ω,

∂u

∂n
= λb(x)|u|q−2u on ∂Ω.

Here, λ ∈ R is a parameter, m,a ∈ L∞(Ω), b ∈ L∞(∂Ω), a > 0 in Ω,

m, b may change sign, m+ ̸≡ 0, and

1 < q < 2 < p (i.e., q − 1 < 1 < p− 1).

In this talk, variational methods together with a bifurcation

technique are used to study the structure of the set of positive

solutions for λ ∈ R.
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Regularity and positivity.

(Pλ)


−∆u = λ(m(x)u− a(x)|u|p−2u) in Ω,

∂u

∂n
= λb(x)|u|q−2u on ∂Ω.

If u ∈ H1(Ω) is a weak solution of (Pλ), then we have

u ∈ W
2,r
loc (Ω) ∩ Cθ(Ω) with r > N and 0 < θ < 1,

(Rossi ’05).

A nontrivial nonnegative solution is positive in Ω by the weak

maximum principle (Gilbarg and Trudinger ’83), and however, it

would be difficult to deduce it is positive in the closure Ω.
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Case b− ≡ 0. If b ≥ 0 then positive solution u > 0 in Ω is unique

for every λ > 0 (Pao ’92). Then, it has been proved the problem{
−∆u = λu− up−1 in Ω
∂u
∂n = uq−1 on ∂Ω

has a unique positive solution for λ ∈ R (Garćıa-Meliàn, Morales-

Rodrigo, Rossi, and Suárez ’08).

Theorem 0. Assume b ≥ 0 and b ̸≡ 0. Then, (Pλ) has a unique

positive solution uλ for λ > 0, satisfying uλ → c∗ as λ → 0+.

c∗

0

u

λ

Here, c∗(
∫
∂Ω b) is the unique positive zero of

ϕ(t) := t2−q
∫
Ω
m− tp−q

∫
Ω
a+

∫
∂Ω
b.
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Give a heuristic observation if b− ̸≡ 0 is considered for
∫
Ωm < 0.

λb
λ

u

0

c∗
b− ̸≡ 0 and

∫
∂Ω
b > 0

λb
λ

u

0

∫
∂Ω
b < 0 and b+ ̸≡ 0

λb
λ

u

0

b ≤ 0
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Constrained eigenvalue problems. Set

λ1(m) = inf

{∫
Ω
|∇u|2 : u ∈ H1(Ω),

∫
Ω
mu2 = 1

}(
=

∫
Ω
|∇φ1|2

)
,

λb = inf

{∫
Ω
|∇u|2 : u ∈ H1(Ω),

∫
Ω
mu2 = 1,

∫
∂Ω
b|u|q ≥ 0

}

Remark. λ1(m) ≤ λb ≤ λD1 (m) (λD1 (m) denotes the positive princi-

pal eigenvalue under the Dirichlet condition), and

λb =


λ1(m), b ≥ 0,

λD1 (m), b < 0.
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Main results.

Theorem 1(Existence and multiplicity for λ > 0). Let p ≤ 2N
N−2 if

N > 2. Assume b+ ̸≡ 0. Then, (Pλ) has at least one nontrivial

nonnegative solution for every λ > 0. Additionally assume∫
Ω
m < 0 and

∫
∂Ω
bφ

q
1 < 0.

Then:

(1) 0 < λ1(m) < λb, and

(2) if ∥a∥∞ is small, then there exists λ∗(a) ∈ (λ1(m), λb) such that

(Pλ) has at least three nontrivial nonnegative solutions for λ ∈
(λ∗, λb).
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Main results (continued).

Theorem 2(Uniqueness for λ > 0 close to 0). If
∫
Ωm < 0 then (Pλ)

has at most one nontrivial nonnegative solution for any λ ∈ (0, λ1(m)).

The unique positive solution, if it exists, converges to c∗ as λ → 0+.

(cf. Theorem 1.3, Morales-Rodrigo and Suárez ’06)

Theorem 3(Smooth curve in λ ≃ 0). Let m,a ∈ Cθ(Ω) and b ∈
C1+θ(∂Ω) be assumed. If

∫
∂Ω b > 0 then there exists a classical

positive solution uλ ∈ C2+θ(Ω) of (Pλ) for λ ∈ (−λ, λ) with some

λ > 0 such that uλ is continuous in C2+θ(Ω) for λ, and u0 = c∗.

Moreover, there is no other classical positive solution which

converges to a positive constant in C(Ω) as λ → 0.
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Main results (continued).

Theorem 4(Multiplicity for λ < 0). Assume p < 2N
N−2 if N > 2. If

b− ̸≡ 0 and
∫
∂Ω b > 0 then (Pλ) has at least two nontrivial nonnega-

tive solutions v1, v2 for λ ∈ (−λ, 0) with some λ > 0, satisfying{
v1 −→ 0

v2 −→ c∗
in Cθ(Ω) as λ → 0−.

Theorem 5(Nonexistence for λ ≪ 0). If m changes sign then there

is no nontrivial nonnegative solution of (Pλ) for any λ < 0 sufficiently

large.

9



“CS -shaped” bifurcation diagram (an expectation)

λb
λ

u

0 λ1(m) λ∗

u1,λ

u3,λ

u2,λ

Case

∫
Ω
m < 0 <

∫
∂Ω
b, and

∫
∂Ω
bφq < 0 <

∫
Ω
aφ

p
1 ≪ 1

c∗

v1,λ

v2,λ
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“S -shaped” bifurcation diagram (an expectation)

0 λbλ∗λ1(m)
λ

u

Case

∫
Ω
m < 0,

∫
∂Ω
b ≤ 0, b+ ̸≡ 0, and

∫
∂Ω
bφ

q
1 < 0 <

∫
Ω
aφ

p
1 ≪ 1
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Futher problems.

(1) For the case b0(x) ≤ 0, consider bifurcation from the zero

solution and its global behavior. It can be verified that given K > 0

and 0 < λ∗ < λb,

∥u1,λ∥ ≤ C (λ∥b+∥∞ )
1

2−q

for b(x) ≤ K, b+ ̸≡ 0, and λ ∈ (0, λ∗).

0 0λb λb0

=⇒

λ λ

u u

“an expectation” if b −→ b0 ≤ 0
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(2) Consider the case a(x) changes sign. This means the

consideration of the case of superlinear nonlinearity with indefinite

weight a(x) in Ω and sublinear nonlinearity with indefinite weight

b(x) on ∂Ω.
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Sketch of Proof of Theorem 1. For u ∈ H1(Ω), set

Iλ(u) =
1

2
Eλ(u) +

λ

p
A(u) −

λ

q
B(u),

where

Eλ(u) =

∫
Ω
|∇u|2 − λ

∫
Ω
mu2, A(u) =

∫
Ω
a|u|p, B(u) =

∫
∂Ω
b|u|q.

=⇒ Iλ is coercive for λ > 0.

Show the existence of at least three nontrivial nonnegative solu-

tions for some range of λ.

• ∃ u1,λ ∈ B+ s.t. Iλ(u1,λ) = infu∈B+ Iλ(u) < 0, where

B+ = {u ∈ H1(Ω) : B(u) > 0}, since b+ ̸≡ 0.

• ∃ u2,λ ∈ E−
λ s.t. Iλ(u2,λ) = inf

u∈E−
λ
Iλ(u), where

E−
λ = {u ∈ H1(Ω) : Eλ(u) < 0}, if λ satisfies

λ ∈ (0, λb) and inf
u∈E−

λ
Iλ(u) < 0.
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• λ ∈ (0, λb) =⇒ B+ ∩ E−
λ = ∅ =⇒ u1,λ ̸= u2,λ

(∵ If λ ∈ (0, λb) then

Eλ(u) =

∫
Ω
|∇u|2 − λ

∫
Ω
mu2 > 0, for

∫
Ω
mu2 > 0, B(u) ≥ 0.)

• Γλ = {γ(·) ∈ C([0, 1],H1(Ω)) : γ(0) = u1,λ, γ(1) = u2,λ}

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > 0.

p <
2N

N − 2
=⇒ compactness argument =⇒ (PS) condition

p =
2N

N − 2
=⇒ Fatou lemma, Brezis-Lieb lemma =⇒ (PS) condition

=⇒ a variant of the Mountain Pass Theorem =⇒ the third solution

u3,λ
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How to verify inf
u∈E−

λ

Iλ(u) < 0 ?

By definition of λb, we remark

B(φ1) < 0 ⇐⇒ λ1(m) < λb

under
∫
Ωm < 0. Note

Eλ(tφ1) = t2(λ1(m) − λ)

∫
Ω
mφ2

1 < 0 for λ > λ1(m).

Consider sufficient conditions for getting the inequality

ψ(t) =
Iλ(tφ1)

tq

= −
λ

q
B(φ1) +

t2−q

2
(λ1(m) − λ) +

λtp−q

p
A(φ1) < 0.
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We see ψ has the global minimum

ψ(t0) = −
λ

q

B(φ1) + Cpq

(
1 − λ1(m)

λ

)p−q
p−2

A(φ1)
2−q
p−2

 ,
and thus, we are reduced to consider when ψ(t0) < 0.

Note

ψ(t0) < 0 ⇐⇒
(
1 −

λ1(m)

λ

)p−q
p−2

> C−1
pq (−B(φ1))A(φ1)

2−q
p−2.

If ∥a∥∞ is small enough, then there exists λ∗ ∈ (λ1(m), λb) such that

ψ(t0) < 0 for λ ∈ (λ∗, λb). Hence, we obtain

inf
u∈E−

λ

Iλ(u) < 0 for λ ∈ (λ∗, λb).

17



References.

1. C.V.Pao, Nonlinear parabolic and elliptic equations, Plenum Press,

1992.
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Thank you for your attention.
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