The effect of a nonlinear boundary condition with an indefinite weight on the positive solution set of the logistic elliptic equation

in AIMS Conference 2014 in Madrid, Spain

$$
\text { July 8, } 2014
$$

Humberto Ramos Quoirin (Univ. de Santiago de Chile)
Kenichiro Umezu (Ibaraki Univ., Japan)

Problem. Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be a smooth bounded domain. Consider
$\left(P_{\lambda}\right)$

$$
\left\{\begin{array}{l}
-\Delta u=\lambda\left(m(x) u-a(x)|u|^{p-2} u\right) \text { in } \Omega, \\
\frac{\partial u}{\partial \mathrm{n}}=\lambda b(x)|u|^{q-2} u \text { on } \partial \Omega .
\end{array}\right.
$$

Here, $\lambda \in \mathbb{R}$ is a parameter, $m, a \in L^{\infty}(\Omega), b \in L^{\infty}(\partial \Omega), a>0$ in Ω, m, b may change sign, $m^{+} \not \equiv 0$, and

$$
1<q<2<p \quad \text { (i.e., } \quad q-1<1<p-1)
$$

In this talk, variational methods together with a bifurcation technique are used to study the structure of the set of positive solutions for $\lambda \in \mathbb{R}$.

Regularity and positivity.
$\left(\boldsymbol{P}_{\lambda}\right)$

$$
\left\{\begin{array}{l}
-\Delta u=\lambda\left(m(x) u-a(x)|u|^{p-2} u\right) \text { in } \Omega \\
\frac{\partial u}{\partial \mathrm{n}}=\lambda b(x)|u|^{q-2} u \text { on } \partial \Omega
\end{array}\right.
$$

If $u \in H^{1}(\Omega)$ is a weak solution of $\left(P_{\lambda}\right)$, then we have

$$
u \in W_{\operatorname{loc}}^{2, r}(\Omega) \cap C^{\theta}(\bar{\Omega}) \quad \text { with } r>N \quad \text { and } 0<\theta<1
$$

(Rossi '05).

A nontrivial nonnegative solution is positive in Ω by the weak maximum principle (Gilbarg and Trudinger '83), and however, it would be difficult to deduce it is positive in the closure $\bar{\Omega}$.

Case $b^{-} \equiv 0$. If $b \geq 0$ then positive solution $u>0$ in $\bar{\Omega}$ is unique for every $\lambda>0$ (Pao '92). Then, it has been proved the problem

$$
\begin{cases}-\Delta u=\lambda u-u^{p-1} & \text { in } \Omega \\ \frac{\partial u}{\partial \mathrm{n}}=u^{q-1} & \text { on } \partial \Omega\end{cases}
$$

has a unique positive solution for $\lambda \in \mathbb{R}$ (García-Meliàn, MoralesRodrigo, Rossi, and Suárez '08).
Theorem 0. Assume $b \geq 0$ and $b \not \equiv 0$. Then, $\left(P_{\lambda}\right)$ has a unique positive solution u_{λ} for $\lambda>0$, satisfying $u_{\lambda} \rightarrow c^{*}$ as $\lambda \rightarrow 0^{+}$.

Here, $c^{*}\left(\int_{\partial \Omega} b\right)$ is the unique positive zero of

$$
\phi(t):=t^{2-q} \int_{\Omega} m-t^{p-q} \int_{\Omega} a+\int_{\partial \Omega} b
$$

Give a heuristic observation if $b^{-} \not \equiv 0$ is considered for $\int_{\Omega} m<0$.

Constrained eigenvalue problems. Set

$$
\begin{gathered}
\lambda_{1}(m)=\inf \left\{\int_{\Omega}|\nabla u|^{2}: u \in H^{1}(\Omega), \int_{\Omega} m u^{2}=1\right\}\left(=\int_{\Omega}\left|\nabla \varphi_{1}\right|^{2}\right), \\
\lambda_{b}=\inf \left\{\int_{\Omega}|\nabla u|^{2}: u \in H^{1}(\Omega), \int_{\Omega} m u^{2}=1, \quad \int_{\partial \Omega} b|u|^{q} \geq 0\right\}
\end{gathered}
$$

Remark. $\quad \lambda_{1}(m) \leq \lambda_{b} \leq \lambda_{1}^{D}(m)\left(\lambda_{1}^{D}(m)\right.$ denotes the positive principal eigenvalue under the Dirichlet condition), and

$$
\lambda_{b}= \begin{cases}\lambda_{1}(m), & b \geq 0 \\ \lambda_{1}^{D}(m), & b<0\end{cases}
$$

Main results.
Theorem 1(Existence and multiplicity for $\lambda>0$). Let $p \leq \frac{2 N}{N-2}$ if $N>2$. Assume $b^{+} \not \equiv 0$. Then, $\left(P_{\lambda}\right)$ has at least one nontrivial nonnegative solution for every $\boldsymbol{\lambda}>0$. Additionally assume

$$
\int_{\Omega} m<0 \quad \text { and } \quad \int_{\partial \Omega} b \varphi_{1}^{q}<0
$$

Then:
(1) $0<\lambda_{1}(m)<\lambda_{b}$, and
(2) if $\|a\|_{\infty}$ is small, then there exists $\lambda^{*}(a) \in\left(\lambda_{1}(m), \lambda_{b}\right)$ such that $\left(P_{\lambda}\right)$ has at least three nontrivial nonnegative solutions for $\lambda \in$ $\left(\lambda^{*}, \lambda_{b}\right)$.

Main results (continued).
Theorem 2(Uniqueness for $\boldsymbol{\lambda}>0$ close to 0). If $\int_{\Omega} m<0$ then $\left(P_{\lambda}\right)$ has at most one nontrivial nonnegative solution for any $\lambda \in\left(0, \lambda_{1}(m)\right)$. The unique positive solution, if it exists, converges to c^{*} as $\lambda \rightarrow 0^{+}$. (cf. Theorem 1.3, Morales-Rodrigo and Suárez '06)

Theorem 3(Smooth curve in $\lambda \simeq 0)$. Let $m, a \in C^{\theta}(\bar{\Omega})$ and $b \in$ $C^{1+\theta}(\partial \Omega)$ be assumed. If $\int_{\partial \Omega} b>0$ then there exists a classical positive solution $u_{\lambda} \in C^{2+\theta}(\bar{\Omega})$ of $\left(P_{\lambda}\right)$ for $\lambda \in(-\bar{\lambda}, \bar{\lambda})$ with some $\bar{\lambda}>0$ such that u_{λ} is continuous in $C^{2+\theta}(\bar{\Omega})$ for λ, and $u_{0}=c^{*}$.

Moreover, there is no other classical positive solution which converges to a positive constant in $C(\bar{\Omega})$ as $\lambda \rightarrow 0$.

Main results (continued).
Theorem 4(Multiplicity for $\lambda<0$). Assume $p<\frac{2 N}{N-2}$ if $N>2$. If $b^{-} \not \equiv 0$ and $\int_{\partial \Omega} b>0$ then $\left(P_{\lambda}\right)$ has at least two nontrivial nonnegative solutions v_{1}, v_{2} for $\lambda \in(-\bar{\lambda}, 0)$ with some $\bar{\lambda}>0$, satisfying

$$
\left\{\begin{array}{l}
v_{1} \longrightarrow 0 \\
v_{2} \longrightarrow c^{*}
\end{array} \quad \text { in } C^{\theta}(\bar{\Omega}) \quad \text { as } \lambda \rightarrow 0^{-}\right.
$$

Theorem 5(Nonexistence for $\lambda \ll 0$). If m changes sign then there is no nontrivial nonnegative solution of $\left(\boldsymbol{P}_{\boldsymbol{\lambda}}\right)$ for any $\boldsymbol{\lambda}<0$ sufficiently large.
"CS -shaped" bifurcation diagram (an expectation)

Case $\int_{\Omega} m<0<\int_{\partial \Omega} b$, and $\int_{\partial \Omega} b \varphi^{q}<0<\int_{\Omega} a \varphi_{1}^{p} \ll 1$

"S -shaped" bifurcation diagram (an expectation)

Case $\int_{\Omega} m<0, \int_{\partial \Omega} b \leq 0, b^{+} \not \equiv 0$, and $\int_{\partial \Omega} b \varphi_{1}^{q}<0<\int_{\Omega} a \varphi_{1}^{p} \ll 1$

Futher problems.

(1) For the case $b_{0}(x) \leq 0$, consider bifurcation from the zero solution and its global behavior. It can be verified that given $K>0$ and $0<\lambda^{*}<\lambda_{b}$,

$$
\left\|u_{1, \lambda}\right\| \leq C\left(\lambda\left\|b^{+}\right\|_{\infty}\right)^{\frac{1}{2-q}}
$$

for $b(x) \leq K, b^{+} \not \equiv 0$, and $\lambda \in\left(0, \lambda^{*}\right)$.

(2) Consider the case $a(x)$ changes sign. This means the consideration of the case of superlinear nonlinearity with indefinite weight $a(x)$ in Ω and sublinear nonlinearity with indefinite weight $b(x)$ on $\partial \Omega$.

Sketch of Proof of Theorem 1. For $u \in H^{1}(\Omega)$, set

$$
I_{\lambda}(u)=\frac{1}{2} E_{\lambda}(u)+\frac{\lambda}{p} A(u)-\frac{\lambda}{q} B(u),
$$

where

$$
\begin{gathered}
E_{\lambda}(u)=\int_{\Omega}|\nabla u|^{2}-\lambda \int_{\Omega} m u^{2}, \quad A(u)=\int_{\Omega} a|u|^{p}, \quad B(u)=\int_{\partial \Omega} b|u|^{q} . \\
\Longrightarrow I_{\lambda} \text { is coercive for } \lambda>0 .
\end{gathered}
$$

Show the existence of at least three nontrivial nonnegative solutions for some range of λ.
$\bullet \exists u_{1, \lambda} \in B^{+}$s.t. $I_{\lambda}\left(u_{1, \lambda}\right)=\inf _{u \in B^{+}} I_{\lambda}(u)<0$, where $B^{+}=\left\{u \in H^{1}(\Omega): B(u)>0\right\}$, since $b^{+} \not \equiv 0$.

- $\exists u_{2, \lambda} \in E_{\lambda}^{-}$s.t. $I_{\lambda}\left(u_{2, \lambda}\right)=\inf _{u \in E_{\lambda}^{-}} I_{\lambda}(u)$, where
$E_{\lambda}^{-}=\left\{u \in H^{1}(\Omega): E_{\lambda}(u)<0\right\}$, if λ satisfies

$$
\lambda \in\left(0, \lambda_{b}\right) \quad \text { and } \quad \inf _{u \in E_{\lambda}^{-}} I_{\lambda}(u)<0 .
$$

- $\lambda \in\left(0, \lambda_{b}\right) \Longrightarrow B^{+} \cap E_{\lambda}^{-}=\emptyset \quad \Longrightarrow u_{1, \lambda} \neq u_{2, \lambda}$
(\because If $\lambda \in\left(0, \lambda_{b}\right)$ then

$$
\left.E_{\lambda}(u)=\int_{\Omega}|\nabla u|^{2}-\lambda \int_{\Omega} m u^{2}>0, \quad \text { for } \quad \int_{\Omega} m u^{2}>0, \quad B(u) \geq 0 .\right)
$$

- $\Gamma_{\lambda}=\left\{\gamma(\cdot) \in C\left([0,1], H^{1}(\Omega)\right): \gamma(0)=u_{1, \lambda}, \gamma(1)=u_{2, \lambda}\right\}$

$$
c_{\lambda}=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{\lambda}(\gamma(t))>0 .
$$

$p<\frac{2 N}{N-2} \Longrightarrow$ compactness argument $\Longrightarrow(P S)$ condition
$p=\frac{2 N}{N-2} \Longrightarrow$ Fatou lemma, Brezis-Lieb lemma $\Longrightarrow(P S)$ condition
\Longrightarrow a variant of the Mountain Pass Theorem \Longrightarrow the third solution $u_{3, \lambda}$

How to verify $\inf _{u \in E_{\lambda}^{-}} I_{\lambda}(u)<0$?
By definition of λ_{b}, we remark

$$
B\left(\varphi_{1}\right)<0 \Longleftrightarrow \lambda_{1}(m)<\lambda_{b}
$$

under $\int_{\Omega} m<0$. Note

$$
E_{\lambda}\left(t \varphi_{1}\right)=t^{2}\left(\lambda_{1}(m)-\lambda\right) \int_{\Omega} m \varphi_{1}^{2}<0 \quad \text { for } \quad \lambda>\lambda_{1}(m)
$$

Consider sufficient conditions for getting the inequality

$$
\begin{aligned}
\psi(t) & =\frac{I_{\lambda}\left(t \varphi_{1}\right)}{t^{q}} \\
& =-\frac{\lambda}{q} B\left(\varphi_{1}\right)+\frac{t^{2-q}}{2}\left(\lambda_{1}(m)-\lambda\right)+\frac{\lambda t^{p-q}}{p} A\left(\varphi_{1}\right)<0
\end{aligned}
$$

We see ψ has the global minimum

$$
\psi\left(t_{0}\right)=-\frac{\lambda}{q}\left(B\left(\varphi_{1}\right)+C_{p q} \frac{\left(1-\frac{\lambda_{1}(m)}{\lambda}\right)^{\frac{p-q}{p-2}}}{A\left(\varphi_{1}\right)^{\frac{2-q}{p-2}}}\right)
$$

and thus, we are reduced to consider when $\psi\left(t_{0}\right)<0$.

Note

$$
\psi\left(t_{0}\right)<0 \Longleftrightarrow\left(1-\frac{\lambda_{1}(m)}{\lambda}\right)^{\frac{p-q}{p-2}}>C_{p q}^{-1}\left(-B\left(\varphi_{1}\right)\right) A\left(\varphi_{1}\right)^{\frac{2-q}{p-2}}
$$

If $\|a\|_{\infty}$ is small enough, then there exists $\lambda^{*} \in\left(\lambda_{1}(m), \lambda_{b}\right)$ such that $\psi\left(t_{0}\right)<0$ for $\lambda \in\left(\lambda^{*}, \lambda_{b}\right)$. Hence, we obtain

$$
\inf _{u \in E_{\lambda}^{-}} I_{\lambda}(u)<0 \quad \text { for } \quad \lambda \in\left(\lambda^{*}, \lambda_{b}\right)
$$

References.

1. C.V.Pao, Nonlinear parabolic and elliptic equations, Plenum Press, 1992.
2. J.García-Meliàn, C.Morales-Rodrigo, J.D.Rossi, and A.Suárez, Ann. Mat. Pura Appl. (4), 187, (2008), 459-486.
3. D.Gilbarg and N.S.Trudinger, Elliptic partial differential equations of second order, Second edition, Springer-Verlag, 1983.
4. C.Morales-Rodrigo and A.Suárez, Comm. Appl. Nonlinear Anal., 13, (2006), 69-78.
5. H.R.Quoirin and K.Umezu, (2013), preprint.
6. J.D.Rossi, IN: Stationary partial differential equations, Vol.II, 311406, Handb. Differ. Equ., Elsevier, 2005.

Thank you for your attention.

