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Our problem
• Ω ⊂ RN , N ≥ 2, bounded domain with smooth boundary ∂Ω,−∆u = λ(m(x)u − u2) in Ω,

∂u

∂n
= λb(x)up on ∂Ω,

where λ ≥ 0, m ∈ Cθ(Ω), ∃x0 ∈ Ω s.t. m(x0) > 0, b ∈ C1+θ(∂Ω),
p > 1.

• Existence of positive solutions (λ, u)

• Initial boundary value problem
∂u

∂t
(t, x) = ∇ · λ−1∇u + m(x)u − u2, (t, x) ∈ (0,∞) × Ω,

u(0, x) = u0(x) ≥ 0, x ∈ Ω,

(λ−1∇u) · n = b(x)up, (t, x) ∈ (0,∞) × ∂Ω.

2



Expected bifurcation−∆u = λ(m(x)u − u2) in Ω,
∂u

∂n
= λb(x)up on ∂Ω,

• It is clear that our problem has two lines of trivial solutions.

λ

Γ1

Γ1 = {(λ, 0)}

Γ2

Γ2 = {(0, c) : constant c ≥ 0}

u = c

0
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Our approach to bifurcation

(1) Reduce our problem to a bifurcation equation in R2 for bifurcation
from Γ2 = {(0, c)}, by using the Lyapunov-Schmidt procedure.

(2) Consider a constrained minimization problem for bifurcation from
infinity, based on the first positive solution.

(3) Apply local and global bifurcation theories for bifurcation from
Γ1 = {(λ, 0)}.
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(1) Bifurcation at (λ, u) = (0, 0): Assume the condition
∫
Ω mdx = 0.

If u = t + w, t = 1
|Ω|

∫
Ω udx, and

∫
Ω wdx = 0, then

− ∆w +
λ

|Ω|

∫
∂Ω

b(t + w)pds = λQ[{m − (t + w)}(t + w)] in Ω,

∂w

∂n
= λb(t + w)p on ∂Ω.

=⇒ (uniquely solvable) w = w(λ, t) for (λ, t) ≃ (0, 0)

=⇒ (bifurcation equation)
::::
For

:::::::::::::::
(λ, t) ≃ (0, 0),

0 = Φ(λ, u(λ, t)) =
∫

Ω
(m − u(λ, t))u(λ, t)dx +

∫
∂Ω

bu(λ, t)pds

=


∃C1λt − t2

(
|Ω| −

∫
∂Ω bds

:::::::::::::

)
+ higher order terms, p = 2

∃C1λt − t2|Ω| + higher order terms, p = 3, 4, 5, . . .
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(2) Variational positive solution−∆u = λ(m(x)u − u2) in Ω,
∂u

∂n
= λb(x)u2 on ∂Ω,

Case:
∫
Ω mdx = 0, p = 2, and |Ω| >

∫
∂Ω bds

∃ x1 ∈ ∂Ω s.t. b(x1) > 0

N = 2, 3

0

λ

u = c

Γ1

Γ2

(U. (2004))
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Garćıa-Melian, Morales-Rodrigo, Rossi, and Suárez (2008) considered
the similar problem−∆v = λv − vp in Ω,

∂v

∂n
= vr on ∂Ω, p, r > 0.

If (λ, u) satisfies our boundary value problem, then

v = λu, m = 1, b = 1 =⇒ p = r = 2

v

λ

0

No
|Ω| > |∂Ω|

N = 2, 3
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Convert to our problem−∆u = λ(m(x)u − u2) in Ω,
∂u

∂n
= λb(x)u2 on ∂Ω,

and then
u = v/λ

0

λ

No

N = 2, 3, m = b = 1, |Ω| > |∂Ω|

min
Ω

u → +∞, λ → +0
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(3) Bifurcation from the λ-axis Γ1: Study−∆u = λ(m(x)u − u2) in Ω,
∂u

∂n
= λb(x)up on ∂Ω,

with
∫
Ω mdx < 0. If we consider the linearized eigenvalue problem at

u = 0: −∆φ = λm(x)φ in Ω,
∂φ

∂n
= 0 on ∂Ω,

there is a unique positive principal eigenvalue λ1(m) (Brown and Lin
(1980)). Hence, a bifurcation point is unique in λ > 0.

In the case
∫
Ω mdx ≥ 0, there is no positive principal eigenvalue.
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Study bifurcation for a general class of nonlinear boundary value
problems: −∆u = λ(m(x)u + g1(x, u)) in Ω,

∂u

∂n
= λ(σ(x)u + g2(x, u)) on ∂Ω,

with
∫
Ω mdx +

∫
∂Ω σds < 0, where

lim
u→+0

g1(x, u)
u

= 0 uniformly in Ω,

lim
u→+0

g2(x, u)
u

= 0 uniformly on ∂Ω.

There is a unique positive principal eigenvalue λ1(m,σ) of−∆φ = λm(x)φ in Ω,
∂φ

∂n
= λσ(x)φ on ∂Ω. (U. (2006))
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Put S := {(λ, u) ∈ [0,∞) × C(Ω) : u is a positive solution for λ}.

Theorem. S contains a subcontinuum C0 of positive solutions
emanating from Γ1 at (λ1, 0), which is unbounded.

0 0

λ λ

u = c u = c

λ1 λ1

Case of no secondary bifurcation from Γ2

C0C0
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For the behavior of bifurcation component, we consider 2 ≤ N ≤ 5,
1 < p < p0(N), p0(N) = 1 + 4

N+3+
√

N2−2N+25
(< 3

2), and the problem−∆u = λ(m(x)u − u2) in Ω,
∂u

∂n
= λb(x)up on ∂Ω.

If m =
1
|Ω|

∫
Ω mdx, mp =

(p − 1)p−1(2 − p)2−p

(−m)2−p
, |Ω| > mp

∫
∂Ω bds, and∫

∂Ω b φp+1
1 ds > 0, then we have

0

λ

u = c

C0

λ1
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For obtaining such subcontinuum C0, we prove that:

(a) there is a unbounded subcontinuua of positive solutions bifurcating
from (λ1, 0), by applying the unilateral global bifurcation theory
proposed by López-Gómez (2001),

(b) the bifurcation from (λ1, 0) is to the left, from the condition that∫
∂Ω b φp+1

1 ds > 0,

(c) there is no bifurcation from Γ2, from the condition that
|Ω| > mp

∫
∂Ω bds,

(d) for any Λ > 0, there is a constant C > 0 such that a positive
solution u for 0 < λ ≤ Λ satisfies the condition ∥u∥C(Ω) ≤ C, by
virtue of 1 < p < p0(N).
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Proof of the a priori upper bound: Let Λ0 > 0, and 0 < λ ≤ Λ0.

• Calculation of
∫
Ω −∆u · udx:∫

Ω
|∇u|2dx = λ

∫
Ω

mu2dx − λ

∫
Ω

u3dx + λ

∫
∂Ω

hup+1ds (1)

• Use of the
:::::
Filo

::::
and

:::::::
Kačur

:::::::::::
inequality

::::::::
(1995): ∀ε > 0, ∃Cε > 0 s.t.∫

∂Ω
|u|p+1ds ≤ ε∥u∥2

1,2 + Cε

(∫
Ω
|u|p+1dx

)r

, ∀u ∈ W 1,2(Ω), (2)

where 1 < p < N+1
N−1 and r > N−p(N−2)

N+1−p(N−1)

=⇒ ∥u∥2
1,2 ≤ C

∫
Ω

u2dx + λ

C

(∫
Ω

u3dx

) (p+1)r
3

−
∫

Ω
u3dx

 (3)
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(p + 1)r
3

< 1 =⇒ ∥u∥2
W 1,2(Ω) ≤ C

(
1 +

∫
Ω

u2dx

)
(4)

• Calculation of
∫
Ω −∆udx:∫

Ω
u2dx =

∫
Ω

mudx +
∫

∂Ω
hupds, 1 < p < 2 (5)

=⇒
∫

Ω
u2dx ≤ C

{(∫
Ω

u2dx

) 1
2

+
(∫

∂Ω
u2ds

) p
2

}
(6)

• Use of the
::::::::
Afrouzi

:::::
and

:::::::
Brown

:::::::::::
inequality (1999):∫

∂Ω
u2ds ≤

∫
Ω
|∇u|2dx + ∃C ′

∫
Ω

u2dx, ∀u ∈ W 1,2(Ω). (7)

=⇒
∫

Ω
u2dx ≤ C

{(∫
Ω

u2dx

) 1
2

+
(

1 +
∫

Ω
u2dx

) p
2

}
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Remarks on the a priori upper bound

• The a priori upper bound breaks down at λ = 0.

• When p > 3
2 , Garćıa-Melian, Morales-Rodrigo, Rossi, and Suárez

(2008) established the same kind of a priori bounds for positive
solutions, while we consider the case 1 < p < p0(N)(< 3

2).
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Thank you for your attention.
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