Existence of a loop of positive solutions for concave-convex problems with indefinite weights

Kenichiro Umezu (Ibaraki Univ.) Uriel Kaufmann (Univ. Nacional de Córdoba) Humberto Ramos Quoirin (Univ. de Santiago de Chile)

> CT22, Equadiff 2019 Leiden, The Netherlands 11 July 2019

(<)</pre>

Problem

Let $\Omega \subset \mathbb{R}^N$, $N \ge 1$ be a smooth bounded domain. Consider the nontrivial solutions of (P_{λ}) with $\lambda \in \mathbb{R}$:

$$(P_{\lambda}) \qquad \begin{cases} -\Delta u = \lambda a(x)u^{q} + b(x)u^{p} & \text{ in } \Omega, \\ u \ge 0 & \text{ in } \Omega, \\ \partial_{\nu}u = 0 & \text{ on } \partial\Omega. \end{cases}$$

a, b ∈ C(Ω), a changes sign, and b > 0 somewhere;
0 < q < 1 < p < N+2/N-2 (concave-convex)
∂_ν = ∂/∂ν, where ν is the unit exterior normal to ∂Ω.

A solution u of (P_{λ}) if $u \in W^{2,r}(\Omega)$, r > N, satisfies (P_{λ}) (so $u \in C^{1}(\overline{\Omega})$.)

Previous works

- Ambrosetti, Brezis and Cerami (1994)
 - $\triangleright | a, b \equiv 1 |$, Dirichlet, existence and multiplicity
- de Figueiredo, Gossez and Ubilla (2003)

 \triangleright fully nonlinearites, a, b change sign, Dirichlet, existence and multiplicity

< ∃ ►

Previous works

- Ambrosetti, Brezis and Cerami (1994)
 - $\triangleright | a, b \equiv 1 |$, Dirichlet, existence and multiplicity
- de Figueiredo, Gossez and Ubilla (2003)
 ▷ fully nonlinearites, a, b change sign, Dirichlet, existence and multiplicity

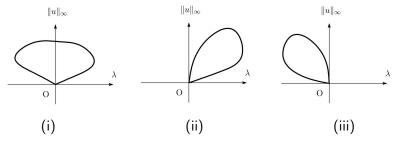
Tarfulea (1998)
 □ a changes sign, b ≡ 1
 Neumann, local existence for λ > 0 small

• Alama (1999) $\triangleright \quad a \equiv 1, b \text{ changes sign}, \text{ Neumann, existence and multiplicity}$

 The aim of this talk is to construct a *loop type subcontinuum* of nontrivial solutions of (P_λ) when a, b change sign.

< □ > < 同 > < 回 > < 回 > < 回 >

 The aim of this talk is to construct a loop type subcontinuum of nontrivial solutions of (P_λ) when a, b change sign.



 $\label{eq:Figure: (i) } \int_\Omega b < 0 \ ; \ \ (\text{ii}) \ \int_\Omega b \geq 0, \ \int_\Omega a < 0 \ ; \ \ (\text{iii}) \ \int_\Omega b \geq 0, \ \int_\Omega a > 0.$

Remark. $(-\lambda)(-a) = \lambda a$.

- The aim of this talk is to construct a *loop type subcontinuum* of nontrivial solutions of (P_λ) when a, b change sign.
- $t \mapsto t^q$ is not differentiable at t = 0.

• • = • •

- The aim of this talk is to construct a *loop type subcontinuum* of nontrivial solutions of (P_λ) when a, b change sign.
- $t \mapsto t^q$ is not differentiable at t = 0.
 - $\sqrt{\{(\lambda, 0)\}}$ is a trivial line. However, we can *not* apply there directly the bifurcation theory from simple eigenvalues (Crandall-Rabinowitz),

- The aim of this talk is to construct a *loop type subcontinuum* of nontrivial solutions of (P_λ) when a, b change sign.
- $t \mapsto t^q$ is not differentiable at t = 0.
 - $\sqrt{\{(\lambda, 0)\}}$ is a trivial line. However, we can *not* apply there directly the bifurcation theory from simple eigenvalues (Crandall-Rabinowitz),
 - $\sqrt{}$ The strong maximum principle (SMP) is *not* applicable, since the term $a(x)t^q$ does not satisfy the slope condition. So, a nontrivial solution is not necessarily positive in Ω .

(日) (四) (日) (日) (日)

Assumptions

Assume some certain conditions for getting a *bounded subcontinuum* of nontrivial solutions of (P_{λ}) . Let

$$\Omega^{\psi}_{\pm} := \{ x \in \Omega : \psi \gtrless 0 \}.$$

• $(H_{ab}): \ \Omega^a_+ \cap \Omega^b_+ \neq \emptyset$, and $\Omega^a_- \cap \Omega^b_+ \neq \emptyset$. (\Longrightarrow upper bound of $|\lambda|$)

イロト 不得下 イヨト イヨト

Assumptions

Assume some certain conditions for getting a *bounded subcontinuum* of nontrivial solutions of (P_{λ}) . Let

$$\Omega^{\psi}_{\pm} := \{ x \in \Omega : \psi \gtrless 0 \}.$$

• $(H_{ab}): \ \Omega^a_+ \cap \Omega^b_+ \neq \emptyset$, and $\Omega^a_- \cap \Omega^b_+ \neq \emptyset$. (\Longrightarrow upper bound of $|\lambda|$)

• (H_a) : Ω^a_{\pm} consist of a finite number of connected components. (\Longrightarrow no bifurcation from zero at $\lambda \neq 0$)

イロト イポト イヨト イヨト 二日

Assumptions

Assume some certain conditions for getting a *bounded subcontinuum* of nontrivial solutions of (P_{λ}) . Let

$$\Omega^{\psi}_{\pm} := \{ x \in \Omega : \psi \gtrless 0 \}.$$

• $(H_{ab}): \ \Omega^a_+ \cap \Omega^b_+ \neq \emptyset$, and $\Omega^a_- \cap \Omega^b_+ \neq \emptyset$. (\Longrightarrow upper bound of $|\lambda|$)

- $(H_a): \ \Omega^a_{\pm}$ consist of a finite number of connected components. (\Longrightarrow no bifurcation from zero at $\lambda \neq 0$)
- (H_b): when Ω^b₊ ⊂ Ω, some growth condition of b⁺ in Ω^b₊ is imposed in a tubular neighborhood of ∂Ω^b₊ (cf. Amann and López-Gómez (1998)). (⇒ upper bound of the uniform norm for solutions)

イロト 不得 トイヨト イヨト 二日

Main theorem

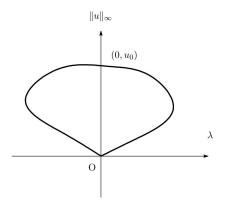
Under the conditions, if $\int_{\Omega} b < 0$ then (P_{λ}) has a subcontinuum C_0 in $\mathbb{R} \times C^1(\overline{\Omega})$ of solutions which satisfies

 $\mathcal{C}_0 \cap \{(\lambda, 0)\} = \{(0, 0)\}.$

Moreover, C_0 is a loop, i.e.,...

< □ > < 同 > < 回 > < 回 > < 回 >

(i) (0, u₀) ∈ C₀ for some positive solution u₀ of (P_λ) with λ = 0;
(ii) C₀ does not contain any small positive solutions for λ = 0;
(iii) The bifurcation at (0, 0) is subcritical and supercritical.



Regularization scheme

To overcome the difficulty that (P_{λ}) is not differentiable at u = 0, we consider ε -regularization of (P_{λ}) with $\varepsilon > 0$:

$$(P_{\lambda,\varepsilon}) \qquad \begin{cases} -\Delta u = \lambda a(x)(u+\varepsilon)^{q-1}u + b(x)u^p & \text{ in } \Omega, \\ u \ge 0 & \text{ in } \Omega, \\ \partial_{\nu}u = 0 & \text{ on } \partial\Omega. \end{cases}$$

< □ > < 同 > < 回 > < 回 > < 回 >

Regularization scheme

To overcome the difficulty that (P_{λ}) is not differentiable at u = 0, we consider ε -regularization of (P_{λ}) with $\varepsilon > 0$:

$$(P_{\lambda,\varepsilon}) \qquad \begin{cases} -\Delta u = \lambda a(x)(u+\varepsilon)^{q-1}u + b(x)u^p & \text{ in } \Omega, \\ u \ge 0 & \text{ in } \Omega, \\ \partial_{\nu}u = 0 & \text{ on } \partial\Omega. \end{cases}$$

 $\{(\lambda, 0)\}$ still remains as a trivial line u = 0. Linearize $(P_{\lambda,\varepsilon})$ at u = 0 as

$$\begin{cases} -\Delta \phi = \lambda a(x) \varepsilon^{q-1} \phi & \text{ in } \Omega, \\ \partial_{\nu} \phi = 0 & \text{ on } \partial \Omega, \end{cases}$$

< □ > < 同 > < 回 > < 回 > < 回 >

Regularization scheme

To overcome the difficulty that (P_{λ}) is not differentiable at u = 0, we consider ε -regularization of (P_{λ}) with $\varepsilon > 0$:

$$(P_{\lambda,\varepsilon}) \qquad \begin{cases} -\Delta u = \lambda a(x)(u+\varepsilon)^{q-1}u + b(x)u^p & \text{ in } \Omega, \\ u \ge 0 & \text{ in } \Omega, \\ \partial_{\nu}u = 0 & \text{ on } \partial\Omega. \end{cases}$$

 $\{(\lambda,0)\}$ still remains as a trivial line u=0. Linearize $(P_{\lambda,\varepsilon})$ at u=0 as

$$\begin{cases} -\Delta \phi = \lambda a(x) \varepsilon^{q-1} \phi & \text{ in } \Omega, \\ \partial_{\nu} \phi = 0 & \text{ on } \partial \Omega, \end{cases}$$

which possesses $\lambda_{1,\varepsilon}^{-} = 0$, $\lambda_{1,\varepsilon}^{+} > 0$, exactly two principal eigenvalues, and $\lambda_{1,\varepsilon}^{+} \to 0$ as $\varepsilon \searrow 0$.

Case $\int_{\Omega} b < 0$

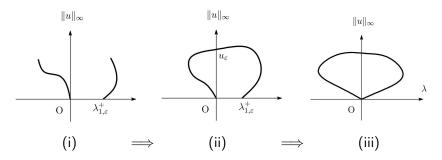


Figure: (i) local bifurcation ; (ii) global bifurcation (the a priori bounds) ; (iii) Whyburn's topological approach ($\varepsilon \searrow 0$)

< ∃ ►

No bifurcation from $(\lambda, 0)$ at $\lambda \neq 0$

Proposition. Assume (H_a) . Then we have no bifurcation from zero at any $\lambda \neq 0$.

 $(H_a): \ \Omega^a_{\pm} = \{x \in \Omega: a(x) \gtrless 0\}$ consist of a finite number of connected components.

イロト イポト イヨト イヨト 二日

No bifurcation from $(\lambda, 0)$ at $\lambda \neq 0$

Proposition. Assume (H_a) . Then we have no bifurcation from zero at any $\lambda \neq 0$.

Proof. By contradiction we assume $\lambda_n \to \lambda_0 > 0$ and $||u_n||_{H^1(\Omega)} \to 0$. Then we deduce, up to a subsequence,

either
$$\int_{\Omega} a(x) u_n^{q+1} \leq 0$$
, or $u_n \not\equiv 0$ in Ω_+^a .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

No bifurcation from $(\lambda, 0)$ at $\lambda \neq 0$

Proposition. Assume (H_a) . Then we have no bifurcation from zero at any $\lambda \neq 0$.

Proof. By contradiction we assume $\lambda_n \to \lambda_0 > 0$ and $||u_n||_{H^1(\Omega)} \to 0$. Then we deduce, up to a subsequence,

either
$$\int_{\Omega} a(x)u_n^{q+1} \leq 0$$
, or $u_n \not\equiv 0$ in Ω^a_+

If $u_n \neq 0$ in Ω^a_+ then there may exist a connected open subset Ω' of Ω^a_+ such that $u_n \neq 0$ in Ω' by (H_a) , so $u_n > 0$ in Ω' by the SMP. By a comparison argument using subsolutions, it follows that

 $u_n \ge \psi$ in a ball $B \Subset \Omega'$,

where ψ is a positive eigenfunction of the smallest eigenvalue of the problem $-\Delta \psi = \lambda a(x)\psi$ in B, $\psi|_{\partial B} = 0$.

Concluding remarks

- Nonlinearities u^q and u^p can be extended to a fully concave-convex class f(u) and g(u), respectively.
- The Dirichlet case $u|_{\partial\Omega} = 0$ can be argued similarly. In this case, we have two principal eigenvalues $\lambda_{1,\varepsilon}^- < 0 < \lambda_{1,\varepsilon}^+$ of the linearized eigenvalue problem, and $\lambda_{1,\varepsilon}^{\pm} \to 0$.
- We don't know if any nontrivial solution of (P_λ) implies a positive solution, but when q is close to 1, *every* nontrivial solution is positive in the case b ≥ 0.

イロト 不得下 イヨト イヨト

Thank you for your kind attention.

< □ > < □ > < □ > < □ > < □ >