Existence of a loop of positive solutions for

 concave-convex problems with indefinite weightsKenichiro Umezu (Ibaraki Univ.)
Uriel Kaufmann (Univ. Nacional de Córdoba)
Humberto Ramos Quoirin (Univ. de Santiago de Chile)

CT22, Equadiff 2019
Leiden, The Netherlands
11 July 2019

Problem

Let $\Omega \subset \mathbb{R}^{N}, N \geq 1$ be a smooth bounded domain. Consider the nontrivial solutions of $\left(P_{\lambda}\right)$ with $\lambda \in \mathbb{R}$:
$\left(P_{\lambda}\right) \quad \begin{cases}-\Delta u=\lambda a(x) u^{q}+b(x) u^{p} & \text { in } \Omega, \\ u \geq 0 & \text { in } \Omega, \\ \partial_{\nu} u=0 & \text { on } \partial \Omega .\end{cases}$

- $a, b \in C(\bar{\Omega}), a$ changes sign, and $b>0$ somewhere;
- $0<q<1<p<\frac{N+2}{N-2}$ (concave-convex)
- $\partial_{\nu}=\frac{\partial}{\partial \nu}$, where ν is the unit exterior normal to $\partial \Omega$.

A solution u of $\left(P_{\lambda}\right)$ if $u \in W^{2, r}(\Omega), r>N$, satisfies $\left(P_{\lambda}\right)$ (so $u \in C^{1}(\bar{\Omega})$.)

Previous works

- Ambrosetti, Brezis and Cerami (1994)
$\triangleright a, b \equiv 1$, Dirichlet, existence and multiplicity
- de Figueiredo, Gossez and Ubilla (2003)
\triangleright fully nonlinearites, a, b change sign, Dirichlet, existence and multiplicity

Previous works

- Ambrosetti, Brezis and Cerami (1994)
$\triangleright a, b \equiv 1$, Dirichlet, existence and multiplicity
- de Figueiredo, Gossez and Ubilla (2003)
\triangleright fully nonlinearites, a, b change sign, Dirichlet, existence and multiplicity
- Tarfulea (1998)
$\triangleright a$ changes sign, $b \equiv 1$, Neumann, local existence for $\lambda>0$ small
- Alama (1999)
$\triangleright a \equiv 1, \quad b$ changes sign, Neumann, existence and multiplicity

Aim and remarks

- The aim of this talk is to construct a loop type subcontinuum of nontrivial solutions of $\left(P_{\lambda}\right)$ when a, b change sign.

Aim and remarks

- The aim of this talk is to construct a loop type subcontinuum of nontrivial solutions of $\left(P_{\lambda}\right)$ when a, b change sign.

(i)

(ii)

(iii)

Figure: (i) $\int_{\Omega} b<0$;
(ii) $\int_{\Omega} b \geq 0, \int_{\Omega} a<0$;
(iii) $\int_{\Omega} b \geq 0, \int_{\Omega} a>0$.

Remark. $(-\lambda)(-a)=\lambda a$.

Aim and remarks

- The aim of this talk is to construct a loop type subcontinuum of nontrivial solutions of $\left(P_{\lambda}\right)$ when a, b change sign.
- $t \mapsto t^{q}$ is not differentiable at $t=0$.

Aim and remarks

- The aim of this talk is to construct a loop type subcontinuum of nontrivial solutions of $\left(P_{\lambda}\right)$ when a, b change sign.
- $t \mapsto t^{q}$ is not differentiable at $t=0$.
$\sqrt{ }\{(\lambda, 0)\}$ is a trivial line. However, we can not apply there directly the bifurcation theory from simple eigenvalues (Crandall-Rabinowitz),

Aim and remarks

- The aim of this talk is to construct a loop type subcontinuum of nontrivial solutions of $\left(P_{\lambda}\right)$ when a, b change sign.
- $t \mapsto t^{q}$ is not differentiable at $t=0$.
$\sqrt{ }\{(\lambda, 0)\}$ is a trivial line. However, we can not apply there directly the bifurcation theory from simple eigenvalues (Crandall-Rabinowitz),

The strong maximum principle (SMP) is not applicable, since the term $a(x) t^{q}$ does not satisfy the slope condition. So, a nontrivial solution is not necessarily positive in Ω.

Assumptions

Assume some certain conditions for getting a bounded subcontinuum of nontrivial solutions of $\left(P_{\lambda}\right)$. Let

$$
\Omega_{ \pm}^{\psi}:=\{x \in \Omega: \psi \gtrless 0\} .
$$

- $\left(H_{a b}\right): \Omega_{+}^{a} \cap \Omega_{+}^{b} \neq \emptyset$, and $\Omega_{-}^{a} \cap \Omega_{+}^{b} \neq \emptyset .(\Longrightarrow$ upper bound of $|\lambda|)$

Assumptions

Assume some certain conditions for getting a bounded subcontinuum of nontrivial solutions of $\left(P_{\lambda}\right)$. Let

$$
\Omega_{ \pm}^{\psi}:=\{x \in \Omega: \psi \gtrless 0\} .
$$

- $\left(H_{a b}\right): \Omega_{+}^{a} \cap \Omega_{+}^{b} \neq \emptyset$, and $\Omega_{-}^{a} \cap \Omega_{+}^{b} \neq \emptyset .(\Longrightarrow$ upper bound of $|\lambda|)$
- $\left(H_{a}\right): \Omega_{ \pm}^{a}$ consist of a finite number of connected components. $(\Longrightarrow$ no bifurcation from zero at $\lambda \neq 0$)

Assumptions

Assume some certain conditions for getting a bounded subcontinuum of nontrivial solutions of $\left(P_{\lambda}\right)$. Let

$$
\Omega_{ \pm}^{\psi}:=\{x \in \Omega: \psi \gtrless 0\} .
$$

- $\left(H_{a b}\right): \Omega_{+}^{a} \cap \Omega_{+}^{b} \neq \emptyset$, and $\Omega_{-}^{a} \cap \Omega_{+}^{b} \neq \emptyset .(\Longrightarrow$ upper bound of $|\lambda|)$
- $\left(H_{a}\right): \Omega_{ \pm}^{a}$ consist of a finite number of connected components. $(\Longrightarrow$ no bifurcation from zero at $\lambda \neq 0$)
- $\left(H_{b}\right)$: when $\overline{\Omega_{+}^{b}} \subset \Omega$, some growth condition of b^{+}in Ω_{+}^{b} is imposed in a tubular neighborhood of $\partial \Omega_{+}^{b}$ (cf. Amann and López-Gómez (1998)). (\Longrightarrow upper bound of the uniform norm for solutions)

Main theorem

Under the conditions, if $\int_{\Omega} b<0$ then $\left(P_{\lambda}\right)$ has a subcontinuum \mathcal{C}_{0} in $\mathbb{R} \times C^{1}(\bar{\Omega})$ of solutions which satisfies

$$
\mathcal{C}_{0} \cap\{(\lambda, 0)\}=\{(0,0)\} .
$$

Moreover, \mathcal{C}_{0} is a loop, i.e.,...
(i) $\left(0, u_{0}\right) \in \mathcal{C}_{0}$ for some positive solution u_{0} of $\left(P_{\lambda}\right)$ with $\lambda=0$;
(ii) \mathcal{C}_{0} does not contain any small positive solutions for $\lambda=0$;
(iii) The bifurcation at $(0,0)$ is subcritical and supercritical.

Regularization scheme

To overcome the difficulty that $\left(P_{\lambda}\right)$ is not differentiable at $u=0$, we consider ε-regularization of $\left(P_{\lambda}\right)$ with $\varepsilon>0$:
$\left(P_{\lambda, \varepsilon}\right) \quad \begin{cases}-\Delta u=\lambda a(x)(u+\varepsilon)^{q-1} u+b(x) u^{p} & \text { in } \Omega, \\ u \geq 0 & \text { in } \Omega, \\ \partial_{\nu} u=0 & \text { on } \partial \Omega .\end{cases}$

Regularization scheme

To overcome the difficulty that $\left(P_{\lambda}\right)$ is not differentiable at $u=0$, we consider ε-regularization of $\left(P_{\lambda}\right)$ with $\varepsilon>0$:
$\left(P_{\lambda, \varepsilon}\right) \quad \begin{cases}-\Delta u=\lambda a(x)(u+\varepsilon)^{q-1} u+b(x) u^{p} & \text { in } \Omega, \\ u \geq 0 & \text { in } \Omega, \\ \partial_{\nu} u=0 & \text { on } \partial \Omega .\end{cases}$
$\{(\lambda, 0)\}$ still remains as a trivial line $u=0$. Linearize $\left(P_{\lambda, \varepsilon}\right)$ at $u=0$ as

$$
\begin{cases}-\Delta \phi=\lambda a(x) \varepsilon^{q-1} \phi & \text { in } \Omega \\ \partial_{\nu} \phi=0 & \text { on } \partial \Omega\end{cases}
$$

Regularization scheme

To overcome the difficulty that $\left(P_{\lambda}\right)$ is not differentiable at $u=0$, we consider ε-regularization of $\left(P_{\lambda}\right)$ with $\varepsilon>0$:
$\left(P_{\lambda, \varepsilon}\right) \quad \begin{cases}-\Delta u=\lambda a(x)(u+\varepsilon)^{q-1} u+b(x) u^{p} & \text { in } \Omega, \\ u \geq 0 & \text { in } \Omega, \\ \partial_{\nu} u=0 & \text { on } \partial \Omega .\end{cases}$
$\{(\lambda, 0)\}$ still remains as a trivial line $u=0$. Linearize $\left(P_{\lambda, \varepsilon}\right)$ at $u=0$ as

$$
\begin{cases}-\Delta \phi=\lambda a(x) \varepsilon^{q-1} \phi & \text { in } \Omega \\ \partial_{\nu} \phi=0 & \text { on } \partial \Omega\end{cases}
$$

which possesses $\lambda_{1, \varepsilon}^{-}=0, \quad \lambda_{1, \varepsilon}^{+}>0$, exactly two principal eigenvalues, and $\lambda_{1, \varepsilon}^{+} \rightarrow 0$ as $\varepsilon \searrow 0$.

Case $\int_{\Omega} b<0$

(i) $\quad \Longrightarrow$
(ii)
\Longrightarrow
(iii)

Figure: (i) local bifurcation ; (ii) global bifurcation (the a priori bounds) ;
Whyburn's topological approach $(\varepsilon \searrow 0)$

No bifurcation from $(\lambda, 0)$ at $\lambda \neq 0$

Proposition. Assume $\left(H_{a}\right)$. Then we have no bifurcation from zero at any $\lambda \neq 0$.
$\left(H_{a}\right): \Omega_{ \pm}^{a}=\{x \in \Omega: a(x) \gtrless 0\}$ consist of a finite number of connected components.

No bifurcation from $(\lambda, 0)$ at $\lambda \neq 0$

Proposition. Assume $\left(H_{a}\right)$. Then we have no bifurcation from zero at any $\lambda \neq 0$.
Proof. By contradiction we assume $\lambda_{n} \rightarrow \lambda_{0}>0$ and $\left\|u_{n}\right\|_{H^{1}(\Omega)} \rightarrow 0$.
Then we deduce, up to a subsequence,
either $\quad \int_{\Omega} a(x) u_{n}^{q+1} \leq 0, \quad$ or $\quad u_{n} \not \equiv 0$ in Ω_{+}^{a}.

No bifurcation from $(\lambda, 0)$ at $\lambda \neq 0$

Proposition. Assume $\left(H_{a}\right)$. Then we have no bifurcation from zero at any $\lambda \neq 0$.
Proof. By contradiction we assume $\lambda_{n} \rightarrow \lambda_{0}>0$ and $\left\|u_{n}\right\|_{H^{1}(\Omega)} \rightarrow 0$.
Then we deduce, up to a subsequence,
either $\quad \int_{\Omega} a(x) u_{n}^{q+1} \leq 0, \quad$ or $\quad u_{n} \not \equiv 0$ in Ω_{+}^{a}.
If $u_{n} \not \equiv 0$ in Ω_{+}^{a} then there may exist a connected open subset Ω^{\prime} of Ω_{+}^{a} such that $u_{n} \not \equiv 0$ in Ω^{\prime} by $\left(H_{a}\right)$, so $u_{n}>0$ in Ω^{\prime} by the SMP. By a comparison argument using subsolutions, it follows that

$$
u_{n} \geq \psi \quad \text { in a ball } B \Subset \Omega^{\prime},
$$

where ψ is a positive eigenfunction of the smallest eigenvalue of the problem $-\Delta \psi=\lambda a(x) \psi$ in $B,\left.\psi\right|_{\partial B}=0$.

Concluding remarks

- Nonlinearities u^{q} and u^{p} can be extended to a fully concave-convex class $f(u)$ and $g(u)$, respectively.
- The Dirichlet case $\left.u\right|_{\partial \Omega}=0$ can be argued similarly. In this case, we have two principal eigenvalues $\lambda_{1, \varepsilon}^{-}<0<\lambda_{1, \varepsilon}^{+}$of the linearized eigenvalue problem, and $\lambda_{1, \varepsilon}^{ \pm} \rightarrow 0$.
- We don't know if any nontrivial solution of $\left(P_{\lambda}\right)$ implies a positive solution, but when q is close to 1 , every nontrivial solution is positive in the case $b \geq 0$.

Thank you for your kind attention.

