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Problem

Let Ω ⊂ RN , N ≥ 1 be a smooth bounded domain. Consider the

nontrivial solutions of (Pλ) with λ ∈ R:

(Pλ)


−∆u = λa(x)uq + b(x)up in Ω,

u ≥ 0 in Ω,

∂νu = 0 on ∂Ω.

a, b ∈ C(Ω), a changes sign, and b > 0 somewhere;

0 < q < 1 < p < N+2
N−2 (concave-convex)

∂ν = ∂
∂ν , where ν is the unit exterior normal to ∂Ω.

A solution u of (Pλ) if u ∈W 2,r(Ω), r > N , satisfies (Pλ)

( so u ∈ C1(Ω). )
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Previous works

Ambrosetti, Brezis and Cerami (1994)

▷ a, b ≡ 1 , Dirichlet, existence and multiplicity

de Figueiredo, Gossez and Ubilla (2003)

▷ fully nonlinearites, a, b change sign , Dirichlet, existence and

multiplicity

Tarfulea (1998)

▷ a changes sign, b ≡ 1 , Neumann, local existence for λ > 0

small

Alama (1999)

▷ a ≡ 1, b changes sign , Neumann, existence and multiplicity
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Aim and remarks

The aim of this talk is to construct a loop type subcontinuum of

nontrivial solutions of (Pλ) when a, b change sign.

t 7→ tq is not differentiable at t = 0.

√
{(λ, 0)} is a trivial line. However, we can not apply there directly the

bifurcation theory from simple eigenvalues (Crandall-Rabinowitz),

√
The strong maximum principle (SMP) is not applicable, since the term

a(x)tq does not satisfy the slope condition. So, a nontrivial solution is

not necessarily positive in Ω.
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(i) (ii) (iii)

Figure: (i)
∫
Ω
b < 0 ; (ii)

∫
Ω
b ≥ 0,

∫
Ω
a < 0 ; (iii)

∫
Ω
b ≥ 0,

∫
Ω
a > 0.

Remark. (−λ)(−a) = λa.
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Assumptions

Assume some certain conditions for getting a bounded subcontinuum of

nontrivial solutions of (Pλ). Let

Ωψ± := {x ∈ Ω : ψ ≷ 0}.

(Hab) : Ωa+ ∩ Ωb+ ̸= ∅, and Ωa− ∩ Ωb+ ̸= ∅. (=⇒ upper bound of |λ|)

(Ha) : Ωa± consist of a finite number of connected components. (=⇒
no bifurcation from zero at λ ̸= 0)

(Hb) : when Ωb+ ⊂ Ω, some growth condition of b+ in Ωb+ is imposed

in a tubular neighborhood of ∂Ωb+ (cf. Amann and López-Gómez

(1998)). (=⇒ upper bound of the uniform norm for solutions )
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Main theorem

Under the conditions, if
∫
Ω b < 0 then (Pλ) has a subcontinuum C0 in

R× C1(Ω) of solutions which satisfies

C0 ∩ {(λ, 0)} = {(0, 0)}.

Moreover, C0 is a loop, i.e.,...
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(i) (0, u0) ∈ C0 for some positive solution u0 of (Pλ) with λ = 0;

(ii) C0 does not contain any small positive solutions for λ = 0;

(iii) The bifurcation at (0, 0) is subcritical and supercritical.
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Regularization scheme

To overcome the difficulty that (Pλ) is not differentiable at u = 0, we

consider ε-regularization of (Pλ) with ε > 0:

(Pλ,ε)


−∆u = λa(x)(u+ ε)q−1u+ b(x)up in Ω,

u ≥ 0 in Ω,

∂νu = 0 on ∂Ω.

{(λ, 0)} still remains as a trivial line u = 0. Linearize (Pλ,ε) at u = 0 as−∆ϕ = λa(x)εq−1ϕ in Ω,

∂νϕ = 0 on ∂Ω,

which possesses λ−1,ε = 0, λ+1,ε > 0, exactly two principal eigenvalues, and

λ+1,ε → 0 as ε↘ 0.
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Case
∫
Ω b < 0

(i) =⇒ (ii) =⇒ (iii)

Figure: (i) local bifurcation ; (ii) global bifurcation (the a priori bounds) ; (iii)

Whyburn’s topological approach (ε↘ 0)
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No bifurcation from (λ, 0) at λ ̸= 0

Proposition. Assume (Ha). Then we have no bifurcation from zero at

any λ ̸= 0.

(Ha) : Ωa± = {x ∈ Ω : a(x) ≷ 0} consist of a finite number of connected

components.

Proof. By contradiction we assume λn → λ0 > 0 and ∥un∥H1(Ω) → 0.

Then we deduce, up to a subsequence,

either

∫
Ω
a(x)uq+1

n ≤ 0, or un ̸≡ 0 in Ωa+.

If un ̸≡ 0 in Ωa+ then there may exist a connected open subset Ω′ of Ωa+
such that un ̸≡ 0 in Ω′ by (Ha), so un > 0 in Ω′ by the SMP. By a

comparison argument using subsolutions, it follows that

un ≥ ψ in a ball B ⋐ Ω′,

where ψ is a positive eigenfunction of the smallest eigenvalue of the

problem −∆ψ = λa(x)ψ in B, ψ|∂B = 0.
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Concluding remarks

Nonlinearities uq and up can be extended to a fully concave-convex

class f(u) and g(u), respectively.

The Dirichlet case u|∂Ω = 0 can be argued similarly. In this case, we

have two principal eigenvalues λ−1,ε < 0 < λ+1,ε of the linearized

eigenvalue problem, and λ±1,ε → 0.

We don’t know if any nontrivial solution of (Pλ) implies a positive

solution, but when q is close to 1, every nontrivial solution is positive

in the case b ≥ 0.
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Thank you for your kind attention.

K.Umezu (Ibaraki Univ.) Existence of a loop Equadiff2019 12 / 15




