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Let Ω ⊂ R
N , N ≥ 1, be a smooth bounded domain.

Consider positive principal eigenvalue of the problem

⎧⎪⎨
⎪⎩

−∆φ = λ g(x)φ in Ω,

∂φ

∂n
= 0 on ∂Ω,

where

• g ∈ L∞(Ω) changes sign,

• λ ∈ R is an eigenvalue parameter.

Brown-Lin (’80) have proved that:

• there exists a positive principal eigenvalue ⇐⇒ ∫
Ω g dx < 0,

• this is unique (denoted by λ1(g)) and simple,

• λ1(g) = inf

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

|∇v|2 dx∫
Ω

gv2 dx
: v ∈ W 1,2(Ω) ,

∫
Ω

gv2 dx > 0

⎫⎪⎪⎬
⎪⎪⎭ . back
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Our aim is to obtain necessary and sufficient conditions for the con-

dition

lim
j→∞

λ1(gj) = ∞ Blowing-up behavior

under the assumption that

sup
j≥1

‖gj‖∞ < ∞. (unifromly bounded in Ω)
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Our motivation for the study is from the existence of positive solutions to the

semilinear problem of logistic type:⎧⎨
⎩

−∆u = λ(g(x)u− u2 ) in Ω,
∂u

∂n
= 0 on ∂Ω,

where

• u is the population density of some species,

• λ is a reciprocal number of the diffusion coefficient,

• g(x) is the local growth or decay rate

{
g(x) > 0 growth,

g(x) < 0 decay.
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u

λ0
λ1(g)

∫
Ω g dx < 0

extinction survival
•
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Define the interval for survival of the diffusion coefficient by

Ig :=

(
0 ,

1

λ1(g)

)
.

lim
j→∞

λ1(gj) = ∞ ⇐⇒ Igj vanishes.

⇐⇒ which environment is worst in a given class ?

lim
j→∞

‖(gj)
+‖∞ = 0 =⇒ lim

j→∞
λ1(gj) = ∞ ？

(Conjecture) SS
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Does the local growth rate uniformly shrinking

lead to the extinction for species ?
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Cantrell-Cosner (’89) have proved under the Dirichlet condition that

lim
j→∞

λ1(gj) = ∞




lim sup
j→∞

∫
Ω

gjψ dx ≤ 0 , ∀ψ ∈ L1(Ω) s.t. ψ ≥ 0 a.e. in Ω . (CC)

Thm1

We note that ∫
Ω

gjψ dx ≤
∫

Ω

(gj)
+ψ dx for ψ ≥ 0.

where g+ = max{g, 0}. Therefore

lim
j→∞

‖(gj)
+‖∞ = 0 =⇒ lim sup

j→∞

∫
Ω

gjψ dx ≤ 0.

(means ” the conjecture is correct ”)
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For the Neumann case, the conjecture is no longer correct.

Example 1: Let Ω = (0, 1) ⊂ R, and define

gj(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

j
, x ∈

[
0, 1 − 1

j

)

−1 , x ∈
[
1 − 1

j
, 1
] prob1

In this case, λ1(gj) is bounded above. Indeed, we put

vj(x) = −x
j

+ k , x ∈ [0 , 1]

with 0 < k < 1. Then we note∫ 1

0

(v′
j)

2 dx =
1

j2
,∫ 1

0

gj(vj)
2 dx =

k(1 − k)

j2
+ o

(
1

j2

)
(j → ∞).

∴ λ1(gj) ≤

∫ 1

0

(v′
j)

2 dx∫ 1

0

gj(vj)
2 dx

=
1

k(1 − k) + o(1)
(j → ∞). conjecture
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Saut-Scheurer (’78) have proved under the Neumann condition that

λ1(g) ≥ µ2

(
‖g+‖∞ +

‖g‖2
2∣∣∫

Ω g dx
∣∣
)−1

if

∫
Ω

g dx < 0,

where µ2 is the first positive eigenvalue of the problem⎧⎨
⎩

−∆w = µw in Ω,
∂w

∂n
= 0 on ∂Ω.

From this estimate we see

lim
j→∞

‖(gj)
+‖∞ = 0

lim
j→∞

‖gj‖2
2∣∣∣∣

∫
Ω

gj dx

∣∣∣∣
= 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=⇒ lim
j→∞

λ1(gj) = ∞. Thm3c

The following example for the blowing-up is due to Saut-Sheurer:

Example 2: Let g ∈ L∞(Ω) with g �≤ 0 and
∫
Ω g dx < 0, and define

gj = σjg with σj ↓ 0 prob2
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In another direction, Cantrell-Cosner gave an interesting example for

the blowing-up, which is:

Ω = (0, π) ⊂ R , gj(x) = − sin(2j + 1)x .

In this case, Thm4

lim
j→∞

∫
Ω
gjψ dx = 0 , ∀ψ ≥ 0.

We remark that

‖gj‖∞ = 1 , ‖gj‖2 =

√
π

2
. (means ”not shrinking to 0”)
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Dispersing foods lead to the extinction for species.
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Main results

Theorem 1: Condition (CC) is also necessary in the Neumann

case.

Theorem 2: Under

lim sup
j→∞

∫
Ω
gj dx < 0,

the condition

lim sup
j→∞

∫
Ω

gjψ dx ≤ 0 , not constant ∀ψ ∈ L1(Ω) s.t. ψ ≥ 0, a.e. in Ω, (CC2)

is sufficient. (means ”Cantrell-Cosner’s criterion remains true”)

Thm3 Thm4
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Case

lim sup
j→∞

∫
Ω
gj dx = 0 (CC1)

is critical. Thm4

Theorem 3: Under condition (CC1) we have limj→∞ λ1(gj) = ∞,

provided we assume in addition to (CC2)

limj→∞
‖gj‖2

(p∗)′∣∣∫
Ω gj dx

∣∣ = 0 , SSc

where (p∗)′ = p∗/(p∗ − 1),

(Sobolev’s critical exponent) p∗ =

⎧⎨
⎩

2N

N − 2
, N ≥ 3,

∞ , N = 1, 2.
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Example 3 Let Ω = (0, 3) ⊂ R and define

gj(x) =

⎧⎪⎨
⎪⎩

1 − x1/j , 0 ≤ x ≤ 1,

1

9j
x (x− 1)(x− 10) , 1 < x ≤ 3.

Then this illustrates Theorem 3. Note that

‖(gj)
+‖∞ = 1.
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Introduce

Gj ∈ C1(Ω)

⎧⎨
⎩

∆Gj = gj in Ω,

∂Gj

∂n
≤ 0 on ∂Ω

(∫
Ω
gj dx < 0

)

Theorem 4: Under conditions (CC2) and (CC1) we have

limj→∞ λ1(gj) = ∞ if we assume the following five conditions:

lim sup
j→∞

(sup
x∈Ω

Gj(x)) ≤ 0,

lim sup
j→∞

(esssupx∈Ω(−Gj(x)gj(x))) ≤ 0,

sup
j≥1

‖Gjgj‖(p∗)′∣∣∫
Ω gj dx

∣∣ < ∞,

sup
j≥1

∫
Ω(−Gjgj) dx(∫

Ω gj dx
)2 < ∞,

lim
j→∞

∥∥∥∥∂Gj

∂n

∥∥∥∥
(q∗)′, ∂Ω

= 0

(
q∗ =

2(N − 1)

N − 2

)
.
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For gj(x) = − sin kx (k = 2j + 1) we define

Gj(x) =
1

k2
sin kx,

so that ∫ π

0
|Gjgj| dx∣∣∣∣

∫ π

0
gj dx

∣∣∣∣
=
π

4k
,

∫ π

0
(−Gjgj) dx(∫ π

0
gj dx

)2
=
π

8
.
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Open problems

(1) Give a sufficient condition of {gj} for λ1(gj) being bounded

above in the case that (gj)
+ uniformly shrinks to zero. Ex1

(2) Whether the stronger assumption that gj uniformly shrinks to

zero is sufficient for the blowing-up, or not. Ex2
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Sketch of proof of Thm 1: For a contradiction we consider

supj≥1 λ1(gj) < ∞
by choosing subsequences if necessary. Let φj be a normalized positive eigenfunc-

tion of λ1(gj) as
∫
Ω |∇φj|2 dx = 1. It follows that

1 =

∫
Ω

|∇φj|2 dx = λ1(gj)

∫
Ω

gjφ
2
j dx = λ1(gj) t

2
j

∫
Ω

gj

(
1 +

wj

tj

)2

dx

where

φj = tj + wj, tj =
1

|Ω|
∫

Ω

φj dx.

If ‖wj/tj‖W 1,2 � 1 , then

lim sup
j→∞

∫
Ω

gj dx < 0 =⇒
∫

Ω

gj dx < 0 (j � 1) =⇒
∫

Ω

gj

(
1 +

wj

tj

)2

dx < 0 (j � 1)
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Note that

‖wj‖W 1,2 � ‖∇wj‖L2 = ‖∇φj‖L2 = 1

(
∵
∫

Ω

wj dx = 0

)
=⇒ wj −→ ŵ weakly in W 1,2(Ω) and storngly in L2(Ω)

If ‖wj/tj‖W 1,2 ≥ ∃δ , then |tj| is bounded, so that tj −→ t̂. Define φ̂ = t̂ + ŵ. It

follows that

1 = λ1(gj)

∫
Ω

gjφ
2
j dx = λ1(gj)

∫
Ω

gj(φ
2
j − φ̂2 ) dx+ λ1(gj)

∫
Ω

gjφ̂
2 dx

(
lim sup
j→∞

∫
Ω

gjψ dx ≤ 0, not constant ∀ψ ∈ L1(Ω) s.t. ψ ≥ 0 , a.e. in Ω

)
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Thank you for your attention.
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