On the effect of spatial heterogeneity in logistic type elliptic equations with nonlinear boundary conditions

Kenichiro Umezu

Ibaraki University

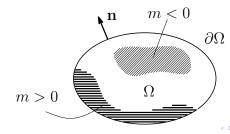
July 4, 2012 in Orlando

Problems

Let $\Omega \subset \mathbb{R}^N, N \ge 2$ be a bounded domain with smooth boundary $\partial \Omega$. We consider the existence of <u>positive solutions</u> of the problem

$$\begin{cases} -\Delta u = \lambda(m(x)u - u^p) & \text{in } \Omega, \\ \frac{\partial u}{\partial \mathbf{n}} = \lambda u^r & \text{on } \partial\Omega. \end{cases}$$

Here $\lambda \geq 0$, p, r > 1, $m \in C^{\theta}(\overline{\Omega})$, and $\underline{m > 0}$ somewhere in Ω .



Problems

Let $\Omega \subset \mathbb{R}^N, N \ge 2$ be a bounded domain with smooth boundary $\partial \Omega$. We consider the existence of <u>positive solutions</u> of the problem

$$\begin{cases} -\Delta u = \lambda(m(x)u - u^p) & \text{in } \Omega, \\ \frac{\partial u}{\partial \mathbf{n}} = \lambda u^r & \text{on } \partial\Omega. \end{cases}$$

Here $\lambda \geq 0$, p, r > 1, $m \in C^{\theta}(\overline{\Omega})$, and $\underline{m > 0}$ somewhere in Ω .

This is the steady state problem of

$$\begin{cases} \frac{\partial u}{\partial t} = \nabla \cdot (d\nabla u) + m(x)u - u^p & \text{ in } (0, \infty) \times \Omega, \\ u(0, x) = u_0(x) \ge 0 & \text{ in } \Omega, \\ (d\nabla u) \cdot \mathbf{n} = u^r & \text{ on } (0, \infty) \times \partial\Omega, \end{cases}$$

where $\lambda = 1/d$.

Homogeneous case p = r

$$\begin{cases} -\Delta u = \lambda(m(x)u - u^p) & \text{in } \Omega, \\ \frac{\partial u}{\partial \mathbf{n}} = \lambda u^r & \text{on } \partial\Omega. \end{cases}$$

The combined nonlinearity appears:

$$m(x)u - u^p$$
 in Ω (absorption effect)
 u^r on $\partial \Omega$ (blowing-up effect)

3

(日) (同) (三) (三)

Homogeneous case p = r

$$\begin{cases} -\Delta u = \lambda(m(x)u - u^p) & \text{in } \Omega, \\ \frac{\partial u}{\partial \mathbf{n}} = \lambda u^r & \text{on } \partial \Omega. \end{cases}$$

In this talk, we restrict our consideration on the homogeneous case

$$1$$

Homogeneous case p = r

$$\begin{cases} -\Delta u = \lambda(m(x)u - u^p) & \text{ in } \Omega, \\ \frac{\partial u}{\partial \mathbf{n}} = \lambda u^r & \text{ on } \partial \Omega. \end{cases}$$

In this talk, we restrict our consideration on the homogeneous case

$$1$$

In this case, equivalently for $\lambda>0$ we consider the scaled problem

$$\begin{cases} -\Delta v = \lambda m(x)v - v^p & \text{in } \Omega, \\ \frac{\partial v}{\partial \mathbf{n}} = v^p & \text{on } \partial \Omega \end{cases}$$

by $v = \lambda^{1/(p-1)}u$.

Favorable region case $\int_{\Omega} m dx \ge 0$

Consider

$$\begin{cases} -\Delta\phi = \lambda(m(x)\phi - pu^{p-1}\phi) + \mu(\lambda, u)\phi & \text{in }\Omega, \\ \frac{\partial\phi}{\partial\mathbf{n}} = p\lambda u^{p-1}\phi & \text{on }\partial\Omega. \end{cases}$$

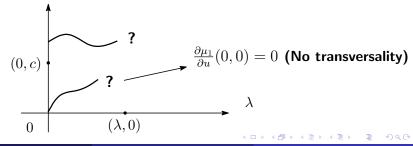
First we study the favorable case $\int_{\Omega} m dx \ge 0$, and the zero solution u = 0 is unstable for all $\lambda > 0$ (Brown-Lin (1980)).

Favorable region case $\int_{\Omega} m dx \ge 0$

Consider

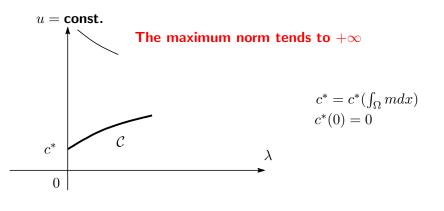
$$\begin{cases} -\Delta\phi = \lambda(m(x)\phi - pu^{p-1}\phi) + \mu(\lambda, u)\phi & \text{in }\Omega, \\ \frac{\partial\phi}{\partial\mathbf{n}} = p\lambda u^{p-1}\phi & \text{on }\partial\Omega. \end{cases}$$

First we study the favorable case $\int_{\Omega} m dx \ge 0$, and the zero solution u = 0 is unstable for all $\lambda > 0$ (Brown-Lin (1980)). u = const.



Local bifurcation analysis

The local bifurcation analysis was done by (U. (2004)), where it was proved that there exist at least two positive solutions for $\lambda > 0$ small if $|\Omega| > |\partial\Omega|$.



Local bifurcation analysis

The local bifurcation analysis was done by (U. (2004)), where it was proved that there exist at least two positive solutions for $\lambda > 0$ small if $|\Omega| > |\partial\Omega|$.

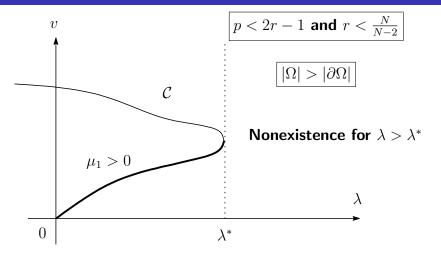
Nonexistence of positive solutions for any $\lambda > 0$ small enough was proved in the case that $|\Omega| < |\partial\Omega||$ (U. (2005)).

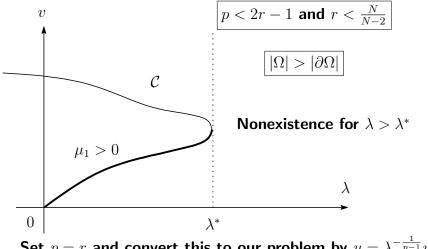
García-Melián, Morales-Rodrigo, Rossi, and Suáres (2008) studied the case that $\underline{m(x) = m_0}$ is a positive constant

$$\begin{cases} -\Delta v = \lambda m_0 v - v^p & \text{in } \Omega, \\ \frac{\partial v}{\partial \mathbf{n}} = v^r & \text{on } \partial \Omega, \end{cases}$$

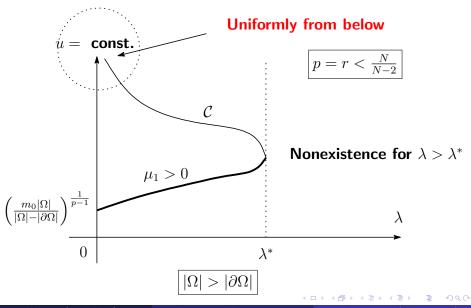
and gave global nature of the bifurcation component of positive solutions at $(\lambda, v) = (0, 0)$. as described in the following diagram.

Meanwhile, they showed that if p = r and $|\Omega| \le |\partial \Omega|$, then there is no positive solutions for all $\lambda \ge 0$.





Set p = r and convert this to our problem by $u = \lambda^{-\frac{1}{p-1}}v$, and we obtain the following.



For the problem

$$\begin{cases} -\Delta u = \lambda (m_0 u - u^p) & \text{in } \Omega, \\ \frac{\partial u}{\partial \mathbf{n}} = \lambda u^p & \text{on } \partial \Omega, \end{cases}$$

we remark that

(i) the above result can be extended to the case m > 0 in $\overline{\Omega}$,

For the problem

$$\begin{cases} -\Delta u = \lambda (m_0 u - u^p) & \text{in } \Omega, \\ \frac{\partial u}{\partial \mathbf{n}} = \lambda u^p & \text{on } \partial \Omega, \end{cases}$$

we remark that

(i) the above result can be extended to the case m > 0 in $\overline{\Omega}$,

(ii) for the case $m_0 = 0$, there exists at least one positive solution for all $\lambda > 0$ (Chipot, Fila, and Quittner (1991)).

For the problem

$$\begin{cases} -\Delta u = \lambda (m_0 u - u^p) & \text{in } \Omega, \\ \frac{\partial u}{\partial \mathbf{n}} = \lambda u^p & \text{on } \partial \Omega, \end{cases}$$

we remark that

(i) the above result can be extended to the case m > 0 in $\overline{\Omega}$,

(ii) for the case $m_0 = 0$, there exists at least one positive solution for all $\lambda > 0$ (Chipot, Fila, and Quittner (1991)).

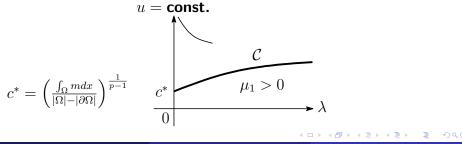
Can we give sufficient conditions of m for the bifurcation component to have turning points ?

Main results (Existence)

Theorem (No turning points)

Let $p = r < \frac{N}{N-2}$. Assume $\int_{\Omega} m dx \ge 0$ and $|\Omega| > |\partial \Omega|$. Then, there exists a minimal positive solution for all $\lambda > 0$, which is asymptotically stable and parametrized continuously by λ , provided that

$$m \leq 0$$
 on $\partial \Omega$.



Theorem (No turning points)

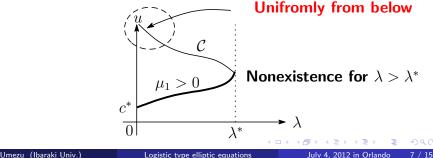
Let $p = r < \frac{N}{N-2}$. Assume $\int_{\Omega} m dx \ge 0$ and $|\Omega| > |\partial\Omega|$. Then, there exists a minimal positive solution for all $\lambda > 0$, which is asymptotically stable and parametrized continuously by λ , provided that

 $m \leq 0$ on $\partial \Omega$.

Here we use the implicit function theorem. We verify the assertion that $\mu_1(\lambda, u) \neq 0$ for all positive solutions (λ, u) .

Theorem (Turning points exist)

Let $p = r < \frac{N}{N-2}$. Assume $m \ge 0$ in $\overline{\Omega}$ and $|\Omega| > |\partial \Omega|$. Then, there exist at least two positive solutions for all $0 < \lambda < \lambda^*$, one positive solution for $\lambda = \lambda^*$, and no positive solution for any $\lambda > \lambda^*$, provided that $m(x_0) > 0$ for some $x_0 \in \partial \Omega$. This means that the bifurcation component from $(0, c^*)$ has a turning point.



Theorem (Turning points exist)

Let $p = r < \frac{N}{N-2}$. Assume $m \ge 0$ in $\overline{\Omega}$ and $|\Omega| > |\partial\Omega|$. Then, there exist at least two positive solutions for all $0 < \lambda < \lambda^*$, one positive solution for $\lambda = \lambda^*$, and no positive solution for any $\lambda > \lambda^*$, provided that $\underline{m(x_0)} > 0$ for some $x_0 \in \partial\Omega$. This means that the bifurcation component from $(0, c^*)$ has a turning point.

In the case $m \ge 0$,

m = 0 on $\partial \Omega \implies$ globally extended in λ

m > 0 somewhere on $\partial \Omega \implies$ turning points exist

7 / 15

イロト 不得下 イヨト イヨト

Theorem (Nonexitence)

Let $p = r < \frac{N}{N-2}$. Assume that $\int_{\Omega} m dx \ge 0$ and $|\Omega| < |\partial \Omega|$ (possibly $|\Omega| = |\partial \Omega|$ when $\int_{\Omega} m dx > 0$). Then,

(a) there is no positive solution for any $\lambda > 0$, provided that $m \leq 0$ on $\partial \Omega$.

(b) Additionally if $\int_{\Omega} m dx > 0$, then for \tilde{m} such that $\tilde{m} > 0$ somewhere in Ω , $\tilde{m} \le m$, $\int_{\Omega} \tilde{m} dx > 0$, and $\tilde{m} \le 0$ on $\partial\Omega$, there is no positive solution for any $\lambda > 0$.

Theorem (Nonexitence)

Let $p = r < \frac{N}{N-2}$. Assume that $\int_{\Omega} m dx \ge 0$ and $|\Omega| < |\partial \Omega|$ (possibly $|\Omega| = |\partial \Omega|$ when $\int_{\Omega} m dx > 0$). Then,

(a) there is no positive solution for any $\lambda > 0$, provided that $m \leq 0$ on $\partial \Omega$.

(b) Additionally if $\int_{\Omega} m dx > 0$, then for \tilde{m} such that $\tilde{m} > 0$ somewhere in Ω , $\tilde{m} \le m$, $\int_{\Omega} \tilde{m} dx > 0$, and $\tilde{m} \le 0$ on $\partial\Omega$, there is no positive solution for any $\lambda > 0$.

This is applicable for the case $m \ge 0$ and $\int_{\Omega} m dx > 0$, and then there is no positive solutions for any $\lambda > 0$ when $|\Omega| \le |\partial \Omega|$.

イロト イポト イヨト イヨト 二日

Bifurcation direction, super and subcritical

We turn to the case $\int_{\Omega} m dx < 0$.

Theorem (use of Crandall and Rabinowitz (1971))

Let p = r. Assume $\int_{\Omega} m dx < 0$. Then, positive solutions bifurcate at $(\lambda_1, 0)$ to the left (subcritically) and right (supercritically) respectively if

$$\int_{\partial\Omega}\phi_1^{p+1}ds>\int_{\Omega}\phi_1^{p+1}dx \text{ and } \int_{\partial\Omega}\phi_1^{p+1}ds<\int_{\Omega}\phi_1^{p+1}dx,$$

where $\lambda_1 > 0$ is the positive principal eigenvalue of the linearized eigenvalue problem

$$\begin{cases} -\Delta \phi = \lambda m(x)\phi & \text{in } \Omega, \\ \frac{\partial \phi}{\partial \mathbf{n}} = 0 & \text{on } \partial \Omega \end{cases}$$

9 / 15

Main results(Global bifurcation structure)

For the subcritical case we have the following.

Theorem (Global bifurcation)

Let $p = r < \frac{N}{N-2}$. Assume $\int_{\Omega} m dx < 0$ and the bifurcation C at $(\lambda_1, 0)$ is subcritical. Then, C is unbounded in $\mathbb{R} \times C(\overline{\Omega})$ and the following assertions hold true:

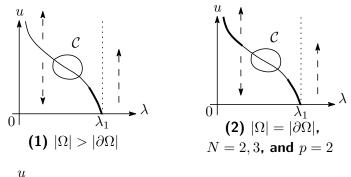
(a) If we set $J := \{\lambda > 0 : (\lambda, u) \in C\}$, then $J = (0, \lambda_1)$. Bifurcation from infinity is possible only at $\lambda = 0$.

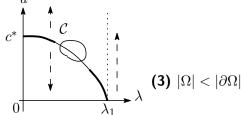
(b) The positive solutions for $0 < \lambda < \lambda_1$ are all unstable.

(c) There is no positive solution for $\lambda = \lambda_1$. Moreover, if

 $m(x) \leq 0$ on $\partial\Omega$, then there is no positive solutions for any $\lambda > \lambda_1$.

Main results(Global bifurcation structure)





K.Umezu (Ibaraki Univ.)

July 4, 2012 in O<u>rlando</u>

10 / 15

Proof for the case $\int_{\Omega} m dx \ge 0$

- A priori lower positive bound for the positive solutions u of the original problem as $\lambda \to \infty$ (cf. Cantrell and Cosner (1989), (2003) for the singular perturbation problem in the interior of Ω)
 - Straighten the boundary and extend the problem by reflection (Lin, Ni, and Takagi (1988))
 - Super and subsolutions of uniformly strongly elliptic b.v.p. with the Dirichlet boundary condition (Amann and López-Gómez (1998))

Proof for the case $\int_{\Omega} m dx \ge 0$

- A priori lower positive bound for the positive solutions u of the original problem as $\lambda \to \infty$ (cf. Cantrell and Cosner (1989), (2003) for the singular perturbation problem in the interior of Ω)
 - Straighten the boundary and extend the problem by reflection (Lin, Ni, and Takagi (1988))
 - Super and subsolutions of uniformly strongly elliptic b.v.p. with the Dirichlet boundary condition (Amann and López-Gómez (1998))
- Localization of blow up on the boundary (Arrieta and Rodríguez-Bernal(2004))

Proof for the case $\int_{\Omega} m dx \ge 0$

- A priori lower positive bound for the positive solutions u of the original problem as $\lambda \to \infty$ (cf. Cantrell and Cosner (1989), (2003) for the singular perturbation problem in the interior of Ω)
 - Straighten the boundary and extend the problem by reflection (Lin, Ni, and Takagi (1988))
 - Super and subsolutions of uniformly strongly elliptic b.v.p. with the Dirichlet boundary condition (Amann and López-Gómez (1998))
- Localization of blow up on the boundary (Arrieta and Rodríguez-Bernal(2004))
- Unilateral global bifurcation theory (López-Gómez (2001))
- A priori upper bounds for positive solutions (Morales-Rodrigo and Suárez (2005))

11 / 15

Proof for the case $\int_{\Omega} m dx < 0$

- A priori upper bounds for positive solutions
- Local bifurcation analysis at $(\lambda,v)=(0,0)$ for the scaled problem

$$\begin{cases} -\Delta v = \lambda m(x)v - v^p & \text{in } \Omega, \\ \frac{\partial v}{\partial \mathbf{n}} = v^p & \text{on } \partial \Omega \end{cases}$$

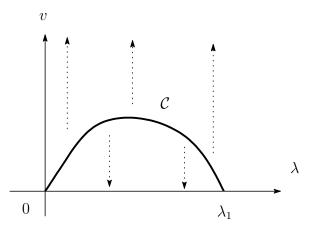
Bounded components

As a corollary, the problem

$$\begin{cases} -\Delta v = \lambda m(x)v - v^p & \text{in } \Omega, \\ \frac{\partial v}{\partial \mathbf{n}} = bv^p & \text{on } \partial \Omega \end{cases}$$

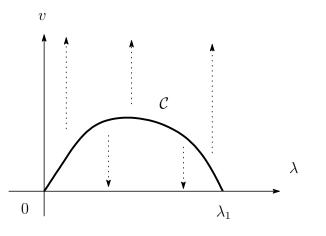
with b > 0 has a bounded bifurcation component for b large.

Bounded components



э

Bounded components



As $\int_{\Omega} m dx \nearrow 0$, C must shrink, and finally vanishes.

K.Umezu, J. Differential Equations, 252, (2012), 1146–1168.

Thank you for your attention.

K.Umezu (Ibaraki Univ.)

Logistic type elliptic equations

July 4, 2012 in Orlando 15 / 15