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Our problem and purpose. Let Ω ⊂ RN , N ≥ 2, be a smooth

bounded domain. Consider

(Pλ)


−∆u = λb(x)uq−1 + a(x)up−1 in Ω,

∂u

∂n
= 0 on ∂Ω.

Here,

• λ ∈ R is a bifurcation parameter;

• 1 < q < 2 < p;

• a, b ∈ Cα(Ω), α ∈ (0, 1), change sign.

Our purpose: to discuss the existence of a loop type com-

ponent of nontrivial non-negative solutions for (Pλ) under some

certain conditions.
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• Ambrosetti, Brezis, and Cerami (1994)

a, b ≡ 1; Dirichlet; Existence, nonexistence, and multiplicity;

Sub and supersolutions; Variational technique.

• Delgado and Suárez (2003)

Non self-adjoint, uniformly elliptic operators; b ≡ 1; Dirichlet;

Unbounded component of non-negative solutions; bifurcation;

Leray-Schauder degree.

• de Figueiredo, Gossez, and Ubilla (2006)

A wide class of concave-convex type with b ≥ 0; Dirichlet.

• Korman (2013)

Ω is a ball or an annulus; Dirichlet; a, b ≡ 1; Solution curve.

(continued)
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∫
Ω
λbuq−1 + aup−1 = 0 =⇒ b ̸≥ 0 or a ̸≥ 0 if u > 0.

• Tarfulea (1998)

b ≡ 1; Neumann;
∫
Ω a < 0 is necessary and sufficient for a

positive solution when λ > 0; Sub and supersolutions.

• Alama (1999)

a ≡ 1; Neumann; Existence, nonexistence, and multiplicity;

Dead core issue (when b changes sign).

Our interest: the case when a, b change sign. We may

assume that∫
Ω
b ≤ 0. (because λb(x) = (−λ)(−b(x)))
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Our argument proceeds with:
√

a regularized problem for (Pλ) at u = 0 with ϵ > 0:

(Pλ, ϵ)
−∆u = λ(b(x) − ϵ)(u + ϵ)q−2u + a(x)up−1 in Ω,

∂u

∂n
= 0 on ∂Ω,

√
a priori bounds of the norm ∥·∥C(Ω) for non-negative solutions,

following an argument proposed by Amann and López-Gómez,

√
a priori bounds of parameter λ for nontrivial non-negative so-

lutions,

√
a topological analysis introduced by Whyburn
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O

∥u∥C(Ω)

Cϵ

λϵ

(Pλ, ϵ) (Pλ)

ϵ→0+−−−−→
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Our assumptions. Set

Ωa
± = {x ∈ Ω : a ≷ 0}, Ωb

± = {x ∈ Ω : b ≷ 0},

and then assume

(H0) Ωa
+ ∩ Ωb

+ ̸= ∅, Ωa
+ ∩ Ωb

− ̸= ∅;

(H1) Ωa
± are subdomains of Ω with smooth boundaries, and satisfy

Ωa
+ ⊂ Ω and Ωa

+ ∪ Ωa
− = Ω;

(H2) Under (H1), there exists α+, continuous, positive, and bounded

away from zero in a tubular neighborhood of ∂Ωa
+ and γ > 0

such that

a+(x) = α+(x) dist(x, ∂Ωa
+)γ, 2 < p < min

{
2N

N − 2
,

2N + γ

N − 1

}
;

(H3) Ωb
± are subdomains of Ω.
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An example of Ω satisfying (H0), (H1), and (H3):

Ω+
a

Ω−
a

Ω−
b

Ω+
b
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Theorem. Assume that
∫
Ω a < 0. If (Hk), k = 0, 1, 2, 3, are

satisfied, then (Pλ) admits a loop type, bounded component C0 =

{(λ, u)} (closed and connected subset) of nontrivial non-negative

solutions such that:

(1) C0 joins (0, 0) to itself;

(2) C0 ̸= {(0, 0)};

(3) C0 does not meet (λ, 0) for any λ ̸= 0;

(4) There exists δ > 0 such that C0 does not contain any positive

solution u of (Pλ) with λ = 0 satisfying ∥u∥C(Ω) ≤ δ.
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A regularization argument. We choose ϵ0 > 0 such that if ϵ ∈
(0, ϵ0), then Ωb−ϵ

+ ̸= ∅. For such ϵ > 0, we consider

(Pλ, ϵ)


−∆u = λ(b(x) − ϵ)(u + ϵ)q−2u + a(x)up−1 in Ω,

∂u

∂n
= 0 on ∂Ω.

The linearized eigenvalue problem for (Pλ, ϵ) at u = 0
−∆ϕ = λ(b − ϵ)ϵq−2ϕ in Ω,

∂ϕ

∂n
= 0 on ∂Ω.

has exactly two principal eigenvalues 0, λϵ, where λϵ > 0, and

(0, 0), (λϵ, 0) both satisfy the transversality condition in the local

bifurcation theory by Crandall and Rabinowitz. Moreover, we can

verify that

λϵ −→ 0 as ϵ → 0+.

11



√
The unilateral global bifurcation theorem by López-Gómez can

be applied to (λϵ, 0) to obtain a component of positive solutions

of (Pλ, ϵ) bifurcating at (λϵ, 0). Moreover, if the component Cϵ
is not unbounded in R × C(Ω), then it meets (0, 0).

√
The bifurcation at (0, 0) is to the left (subcritical), since

∫
Ω a <

0. Consequently, Cϵ cuts the vertical axis.

λ

O

∥u∥C(Ω)

Cϵ

λϵ

12



Proposition (A priori bounds). Assume that (H1) holds. Let

Λ > 0. Suppose

∃C1 > 0 s.t. ∥u∥C(Ωa
+) ≤ C1

for all non-negative solutions u of (Pλ, ϵ) with λ ∈ [0,Λ] and small

ϵ > 0. Then,

∃C2 > 0 s.t. ∥u∥C(Ω) ≤ C2

for such non-negative solutions.

Ωa
+ Ωa

−

∂Ω
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Proof. Consider the concave problem
−∆v = −a−(x)vp−1 + λb+(x)(v + ϵ)q−2v in Ωa

−,

v = C1 on ∂Ωa
+,

∂v
∂n = 0 on ∂Ω.

If u is a nontrivial non-negative solution of (Pλ, ϵ) with λ ∈ [0,Λ] and

small ϵ > 0, then u is a subsolution of this problem. To construct

a supersolution, we consider the unique positive solution w0 of
−∆w = 1 in Ωa

−,

w = 0 on ∂Ωa
+,

∂w
∂n = 0 on ∂Ω.

If we set w = C(w0 + 1), C > 0, then w is a supersolution of the

concave problem, provided C is large. Here C does not depend

on λ, ϵ. The comparison principle shows u ≤ w in Ωa
−, as desired.
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Proposition (A priori bounds 2). Assume that Ωa
+∩Ωb

+ ̸= ∅. Then,

there exist λ > 0 and ϵ0 > 0 such that (Pλ, ϵ) has no nontrivial non-

negative solutions for any λ ≥ λ and ϵ ∈ (0, ϵ0].

Remark. Additionally assume that Ωa
+ ∩ Ωb

− ̸= ∅. Then, this

proposition can be trivially extended to the case |λ| ≥ λ, since we

note that

−∆u = a(x)up−1 + (−λ){−(b(x) − ϵ)}(u + ϵ)q−2u.
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A sketch of proof. Choose a ball B such that B ⊂ Ω, satisfying

that

a(x), b(x) − ϵ0 > 0, x ∈ B.

Consider an eigenfunction ϕ > 0 associated with the first eigen-

value λ1 > 0 of

−∆ϕ = λa(x)ϕ in B, ϕ|∂B = 0.

Let ϵ ∈ (0, ϵ0]. Then, the divergence theorem shows that∫
B
uq−1ϕ

(
a(x)up−q + λ(b(x) − ϵ)

(
u

u + ϵ

)2−q

− λ1a(x)u
2−q

)
< 0.

We observe that(
u

u + ϵ

)2−q

≥ c0 u
2−q, 0 ≤ u ≤ u0.

We then get a contradiction when λ → ∞.
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Topological analysis. Let

lim inf
ϵ

Cϵ =
{
(λ, u) ∈ R × C(Ω) : lim

ϵ
dist ((λ, u), Cϵ) = 0

}
,

lim sup
ϵ

Cϵ =
{
(λ, u) ∈ R × C(Ω) : lim inf

ϵ
dist ((λ, u), Cϵ) = 0

}
.

Then, we can show (Whyburn) that

(0, 0) ∈ lim inf
ϵ

Cϵ ⊂ lim sup
ϵ

Cϵ =: C0 : a component.

Finally, C0 is as desired, verifying that

√
C0 does not meet any (λ, 0) with λ ̸= 0.

√
(Pλ) with λ = 0, i.e., −∆u = a(x)up−1 in Ω with ∂u

∂n = 0 on ∂Ω

has no positive solutions small for the case
∫
Ω a < 0.
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Open problems. When
∫
Ω a ≥ 0, the same bifurcation argument

can be carried out for (Pλ, ϵ), and moreover, there exist no positive

solutions of (Pλ, ϵ) with λ = 0:

−∆w = a(x)wp−1 in Ω,
∂w

∂n
= 0 on ∂Ω.

λ
O

∥u∥C(Ω)

C0

λ
O

∥u∥C(Ω)

Cϵ

λϵ

ϵ→0+−−−−→ ?
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Let p < 2N
N−2 if N > 3. We can prove that if

∫
Ω a > 0 >

∫
Ω b,

then (Pλ) has two nontrivial non-negative, variational solutions

u1,λ, u2,λ for small λ > 0 such that u1,λ < u2,λ, and both converge

to 0.

λ

O

∥u∥C(Ω)

u2,λ ∼ λ
1

p−q

u1,λ ∼ λ
1

2−qw0

Here, w0 is a nontrivial non-negative, least energy solution of

−∆w = b(x)wq−1 in Ω,
∂w

∂n
= 0 on ∂Ω.
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Thank you for your attention.
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