A loop type component of positive solutions of an indefinite concave-convex problem with the Neumann boundary condition
in The 11th AIMS Conference, Orlando
on 4th July, 2016

Humberto Ramos Quoirin (Univ. de Santiago de Chile)
Kenichiro Umezu (Ibaraki Univ., Japan)

Our problem and purpose. Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be a smooth bounded domain. Consider
$\left(P_{\lambda}\right) \quad\left\{\begin{array}{l}-\Delta u=\lambda b(x) u^{q-1}+a(x) u^{p-1} \text { in } \Omega, \\ \frac{\partial u}{\partial \mathrm{n}}=0 \text { on } \partial \Omega .\end{array}\right.$
Here,

- $\lambda \in \mathbb{R}$ is a bifurcation parameter;
- $1<q<2<p$;
- $a, \quad b \in C^{\alpha}(\bar{\Omega}), \alpha \in(0,1), \quad$ change sign.

Our purpose: to discuss the existence of a loop type component of nontrivial non-negative solutions for $\left(P_{\lambda}\right)$ under some certain conditions.


- Ambrosetti, Brezis, and Cerami (1994)
$a, b \equiv 1$; Dirichlet; Existence, nonexistence, and multiplicity; Sub and supersolutions; Variational technique.
- Delgado and Suárez (2003)

Non self-adjoint, uniformly elliptic operators; $b \equiv 1$; Dirichlet; Unbounded component of non-negative solutions; bifurcation; Leray-Schauder degree.

- de Figueiredo, Gossez, and Ubilla (2006)

A wide class of concave-convex type with $b \geq 0$; Dirichlet.

- Korman (2013)
$\Omega$ is a ball or an annulus; Dirichlet; $a, b \equiv 1$; Solution curve.
(continued)

$$
\int_{\Omega} \lambda b u^{q-1}+a u^{p-1}=0 \Longrightarrow b \nsupseteq 0 \quad \text { or } a \nsupseteq 0 \quad \text { if } \quad u>0 .
$$

- Tarfulea (1998)
$b \equiv 1$; Neumann; $\int_{\Omega} a<0$ is necessary and sufficient for a positive solution when $\lambda>0$; Sub and supersolutions.
- Alama (1999)
$a \equiv 1$; Neumann; Existence, nonexistence, and multiplicity; Dead core issue (when $b$ changes sign).

Our interest: the case when $a, b$ change sign. We may assume that

$$
\int_{\Omega} b \leq 0 . \quad(\text { because } \quad \lambda b(x)=(-\lambda)(-b(x)))
$$

Our argument proceeds with:
$\sqrt{ }$ a regularized problem for $\left(P_{\lambda}\right)$ at $u=0$ with $\epsilon>0$ :
$\left(\boldsymbol{P}_{\boldsymbol{\lambda}, \epsilon}\right)$

$$
\left\{\begin{array}{l}
-\Delta u=\lambda(b(x)-\epsilon)(u+\epsilon)^{q-2} u+a(x) u^{p-1} \quad \text { in } \Omega \\
\frac{\partial u}{\partial \mathrm{n}}=0 \text { on } \partial \Omega
\end{array}\right.
$$

$\sqrt{ }$ a priori bounds of the norm $\|\cdot\|_{C(\bar{\Omega})}$ for non-negative solutions, following an argument proposed by Amann and López-Gómez,
$\sqrt{ }$ a priori bounds of parameter $\boldsymbol{\lambda}$ for nontrivial non-negative solutions,
$\sqrt{ }$ a topological analysis introduced by Whyburn


Our assumptions. Set

$$
\Omega_{ \pm}^{a}=\{x \in \Omega: a \gtrless 0\}, \quad \Omega_{ \pm}^{b}=\{x \in \Omega: b \gtrless 0\},
$$

and then assume
$\left(H_{0}\right) \Omega_{+}^{a} \cap \Omega_{+}^{b} \neq \emptyset, \quad \Omega_{+}^{a} \cap \Omega_{-}^{b} \neq \emptyset ;$
( $H_{1}$ ) $\Omega_{ \pm}^{a}$ are subdomains of $\Omega$ with smooth boundaries, and satisfy $\overline{\Omega_{+}^{a}} \subset \Omega$ and $\overline{\Omega_{+}^{a}} \cup \Omega_{-}^{a}=\Omega ;$
$\left(H_{2}\right)$ Under $\left(H_{1}\right)$, there exists $\alpha^{+}$, continuous, positive, and bounded away from zero in a tubular neighborhood of $\partial \Omega_{+}^{a}$ and $\gamma>0$ such that

$$
a^{+}(x)=\alpha^{+}(x) \operatorname{dist}\left(x, \partial \Omega_{+}^{a}\right)^{\gamma}, \quad 2<p<\min \left\{\frac{2 N}{N-2}, \frac{2 N+\gamma}{N-1}\right\}
$$

$\left(H_{3}\right) \Omega_{ \pm}^{b}$ are subdomains of $\Omega$.

An example of $\Omega$ satisfying ( $H_{0}$ ), ( $H_{1}$ ), and ( $H_{3}$ ):


Theorem. Assume that $\int_{\Omega} a<0$. If $\left(H_{k}\right), k=0,1,2,3$, are satisfied, then $\left(P_{\lambda}\right)$ admits a loop type, bounded component $\mathcal{C}_{0}=$ $\{(\lambda, u)\}$ (closed and connected subset) of nontrivial non-negative solutions such that:
(1) $\mathcal{C}_{0}$ joins $(0,0)$ to itself;
(2) $\mathcal{C}_{0} \neq\{(0,0)\}$;
(3) $\mathcal{C}_{0}$ does not meet $(\lambda, 0)$ for any $\lambda \neq 0$;
(4) There exists $\delta>0$ such that $\mathcal{C}_{0}$ does not contain any positive solution $u$ of $\left(P_{\lambda}\right)$ with $\lambda=0$ satisfying $\|u\|_{C(\bar{\Omega})} \leq \delta$.

A regularization argument. We choose $\epsilon_{0}>0$ such that if $\epsilon \in$ $\left(0, \epsilon_{0}\right)$, then $\Omega_{+}^{b-\epsilon} \neq \emptyset$. For such $\epsilon>0$, we consider
$\left(P_{\lambda, \epsilon}\right) \quad\left\{\begin{array}{l}-\Delta u=\lambda(b(x)-\epsilon)(u+\epsilon)^{q-2} u+a(x) u^{p-1} \text { in } \Omega, \\ \frac{\partial u}{\partial \mathrm{n}}=0 \quad \text { on } \partial \Omega .\end{array}\right.$
The linearized eigenvalue problem for $\left(P_{\lambda, \epsilon}\right)$ at $u=0$

$$
\left\{\begin{array}{l}
-\Delta \phi=\lambda(b-\epsilon) \epsilon^{q-2} \phi \quad \text { in } \Omega \\
\frac{\partial \phi}{\partial \mathrm{n}}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

has exactly two principal eigenvalues $0, \lambda_{\epsilon}$, where $\lambda_{\epsilon}>0$, and $(0,0),\left(\lambda_{\epsilon}, 0\right)$ both satisfy the transversality condition in the local bifurcation theory by Crandall and Rabinowitz. Moreover, we can verify that

$$
\lambda_{\epsilon} \longrightarrow 0 \quad \text { as } \epsilon \rightarrow 0^{+}
$$

$\sqrt{ }$ The unilateral global bifurcation theorem by López-Gómez can be applied to $\left(\lambda_{\epsilon}, 0\right)$ to obtain a component of positive solutions of $\left(P_{\lambda, \epsilon}\right)$ bifurcating at $\left(\lambda_{\epsilon}, 0\right)$. Moreover, if the component $\mathcal{C}_{\epsilon}$ is not unbounded in $\mathbb{R} \times C(\bar{\Omega})$, then it meets $(0,0)$.
$\sqrt{ }$ The bifurcation at $(0,0)$ is to the left (subcritical), since $\int_{\Omega} a<$ 0 . Consequently, $\mathcal{C}_{\epsilon}$ cuts the vertical axis.


Proposition (A priori bounds). Assume that ( $H_{1}$ ) holds. Let $\Lambda>0$. Suppose

$$
\exists C_{1}>0 \quad \text { s.t. } \quad\|u\|_{C\left(\overline{\Omega_{+}^{a}}\right)} \leq C_{1}
$$

for all non-negative solutions $u$ of $\left(P_{\lambda, \epsilon}\right)$ with $\lambda \in[0, \Lambda]$ and small $\epsilon>0$. Then,

$$
\exists C_{2}>0 \quad \text { s.t. } \quad\|u\|_{C(\bar{\Omega})} \leq C_{2}
$$

for such non-negative solutions.


Proof. Consider the concave problem

$$
\begin{cases}-\Delta v=-a^{-}(x) v^{p-1}+\lambda b^{+}(x)(v+\epsilon)^{q-2} v & \text { in } \Omega_{-}^{a} \\ v=C_{1} & \text { on } \partial \Omega_{+}^{a} \\ \frac{\partial v}{\partial \mathrm{n}}=0 & \text { on } \partial \Omega\end{cases}
$$

If $u$ is a nontrivial non-negative solution of $\left(P_{\lambda}, \epsilon\right)$ with $\lambda \in[0, \Lambda]$ and small $\epsilon>0$, then $u$ is a subsolution of this problem. To construct a supersolution, we consider the unique positive solution $w_{0}$ of

$$
\begin{cases}-\Delta w=1 & \text { in } \Omega_{-}^{a} \\ w=0 & \text { on } \partial \Omega_{+}^{a} \\ \frac{\partial w}{\partial \mathrm{n}}=0 & \text { on } \partial \Omega\end{cases}
$$

If we set $w=C\left(w_{0}+1\right), C>0$, then $w$ is a supersolution of the concave problem, provided $C$ is large. Here $C$ does not depend on $\lambda, \epsilon$. The comparison principle shows $u \leq w$ in $\overline{\Omega_{-}^{a}}$, as desired.

Proposition (A priori bounds 2). Assume that $\Omega_{+}^{a} \cap \Omega_{+}^{b} \neq \emptyset$. Then, there exist $\bar{\lambda}>0$ and $\epsilon_{0}>0$ such that $\left(P_{\lambda}, \epsilon\right)$ has no nontrivial nonnegative solutions for any $\lambda \geq \bar{\lambda}$ and $\epsilon \in\left(0, \epsilon_{0}\right]$.

Remark. Additionally assume that $\Omega_{+}^{a} \cap \Omega_{-}^{b} \neq \emptyset$. Then, this proposition can be trivially extended to the case $|\lambda| \geq \bar{\lambda}$, since we note that

$$
-\Delta u=a(x) u^{p-1}+(-\lambda)\{-(b(x)-\epsilon)\}(u+\epsilon)^{q-2} u
$$

A sketch of proof. Choose a ball $B$ such that $\bar{B} \subset \Omega$, satisfying that

$$
a(x), \quad b(x)-\epsilon_{0}>0, \quad x \in \bar{B}
$$

Consider an eigenfunction $\phi>0$ associated with the first eigenvalue $\lambda_{1}>0$ of

$$
-\Delta \phi=\lambda a(x) \phi \quad \text { in } B,\left.\quad \phi\right|_{\partial B}=0
$$

Let $\epsilon \in\left(0, \epsilon_{0}\right]$. Then, the divergence theorem shows that

$$
\int_{B} u^{q-1} \phi\left(a(x) u^{p-q}+\lambda(b(x)-\epsilon)\left(\frac{u}{u+\epsilon}\right)^{2-q}-\lambda_{1} a(x) u^{2-q}\right)<0
$$

We observe that

$$
\left(\frac{u}{u+\epsilon}\right)^{2-q} \geq c_{0} u^{2-q}, \quad 0 \leq u \leq u_{0}
$$

We then get a contradiction when $\boldsymbol{\lambda} \rightarrow \infty$.

Topological analysis. Let

$$
\begin{aligned}
& \liminf _{\epsilon} \mathcal{C}_{\epsilon}=\left\{(\lambda, u) \in \mathbb{R} \times C(\bar{\Omega}): \lim _{\epsilon} \operatorname{dist}\left((\lambda, u), \mathcal{C}_{\epsilon}\right)=0\right\} \\
& \limsup _{\epsilon} \mathcal{C}_{\epsilon}=\left\{(\lambda, u) \in \mathbb{R} \times C(\bar{\Omega}): \liminf _{\epsilon} \operatorname{dist}\left((\lambda, u), \mathcal{C}_{\epsilon}\right)=0\right\}
\end{aligned}
$$

Then, we can show (Whyburn) that

$$
(0,0) \in \liminf _{\epsilon} \mathcal{C}_{\epsilon} \subset \limsup _{\epsilon} \mathcal{C}_{\epsilon}=: \mathcal{C}_{0}: \text { a component. }
$$

Finally, $\mathcal{C}_{0}$ is as desired, verifying that
$\sqrt{ } \mathcal{C}_{0}$ does not meet any $(\lambda, 0)$ with $\lambda \neq 0$.
$\sqrt{ }\left(P_{\lambda}\right)$ with $\lambda=0$, i.e., $-\Delta u=a(x) u^{p-1}$ in $\Omega$ with $\frac{\partial u}{\partial \mathrm{n}}=0$ on $\partial \Omega$ has no positive solutions small for the case $\int_{\Omega} a<0$.

Open problems. When $\int_{\Omega} a \geq 0$, the same bifurcation argument can be carried out for $\left(P_{\lambda, \epsilon}\right)$, and moreover, there exist no positive solutions of $\left(P_{\lambda, \epsilon}\right)$ with $\lambda=0$ :

$$
-\Delta w=a(x) w^{p-1} \quad \text { in } \Omega, \quad \frac{\partial w}{\partial \mathrm{n}}=0 \quad \text { on } \partial \Omega
$$



Let $p<\frac{2 N}{N-2}$ if $N>3$. We can prove that if $\int_{\Omega} a>0>\int_{\Omega} b$, then ( $P_{\lambda}$ ) has two nontrivial non-negative, variational solutions $u_{1, \lambda}, u_{2, \lambda}$ for small $\lambda>0$ such that $u_{1, \lambda}<u_{2, \lambda}$, and both converge to 0 .


Here, $w_{0}$ is a nontrivial non-negative, least energy solution of

$$
-\Delta w=b(x) w^{q-1} \text { in } \Omega, \quad \frac{\partial w}{\partial \mathrm{n}}=0 \quad \text { on } \partial \Omega
$$

## Thank you for your attention.

