Positivity of bifurcating nontrivial nonnegative solutions of indefinite concave problems

Kenichiro Umezu (Ibaraki University, Japan)

Co-Authors:

Uriel Kaufmann (Universidad Nacional de Córdoba, Argentina) Humberto Ramos Quoirin (Universidad de Santiago de Chile)

The 12th AIMS Conference in Taipei, Taiwan, 6 July, 2018

Our purpose

In this talk, we discuss positivity of nontrivial nonnegative solutions of the concave problem

$$(\mathcal{P}) \qquad \begin{cases} -\Delta u = a(x)u^q & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega. \end{cases}$$

Here, $a \in C(\overline{\Omega})$ changes sign and $q \in (0, 1)$.

 $\sqrt{}$ The strong maximum principle or Hopf's lemma *does not work* for obtaining that each nontrivial nonnegative solution of (\mathcal{P}) implies an interior point of the positive cone $\{u \in C^1(\overline{\Omega}) : u \ge 0\}$.

 \checkmark We investigate such q 's set of (0,1) by a bifurcation approach, the sub and supersolution method and a variational technique.

・回り イヨト イヨト 三日

Introduction

Let Ω be a bounded domain of \mathbb{R}^N with smooth boundary $\partial \Omega$. We consider nontrivial nonnegative solutions, say *positive solutions* u > 0, of the problem

$$(\mathcal{P}) \qquad \begin{cases} -\Delta u = a(x)u^q & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial\Omega, \end{cases}$$

where $a \in C(\overline{\Omega})$ changes sign, $q \in (0,1)$ and ν is the unit outer normal to $\partial\Omega$.

We say a strongly positive solution $u \gg 0$ if u > 0 in $\overline{\Omega}$. Then,

Q: For which $q \in (0, 1)$, can we deduce $u \gg 0$ from solution u > 0 ?

We can do it for all $q\geq 1.$ We shall see that this is also possible for $q\in (0,1)$ close to 1.

A counterexample (\exists sol. u > 0 but $not \gg 0$)

Let
$$q \in (0, 1)$$
. Define $\Omega := (0, \pi)$,
 $r := \frac{2}{1-q} \in (2, \infty)$, and $a(x) := r^{1-\frac{2}{r}} \left(1 - r \cos^2 x\right)$.

We set

$$u(x) := \frac{\sin^r x}{r} > 0$$
, and it does *not* satisfy $u \gg 0$.

Moreover, u satisfies

$$\begin{cases} -u''(x) = a(x)u(x)^q & \text{in } x \in (0,\pi), \\ u(x) = u'(x) = 0 & \text{at } x = 0,\pi \end{cases}$$

K.Umezu (Ibaraki Univ.)

イロト 不得下 イヨト イヨト 二日

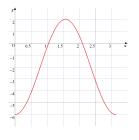


Figure: The weight *a* with $q = \frac{1}{2}$.

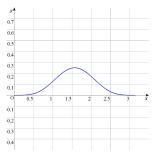


Figure: The solution u > 0 in the case $q = \frac{1}{2}$.

K.Umezu (Ibaraki Univ.)

Pioneer work

Bandle, Pozio and Tesei (Math. Z., 1988) proved:

- If $\int_{\Omega} a < 0$, then (\mathcal{P}) has at least one solution u > 0.
- (\mathcal{P}) has a solution u > 0 which is positive in Ω_+ iff $\int_{\Omega} a < 0$.
- (\mathcal{P}) has at most one solution $u \gg 0$,

where

$$\Omega_+ := \{ x \in \Omega : a(x) > 0 \}.$$

We first prove the existence of a solution $u \gg 0$ of (\mathcal{P}) .

通い イヨト イヨト 二日

Trivial line

Consider the eigenvalue problem

$$\begin{cases} -\Delta \phi = \mu a(x)\phi & \text{in } \Omega, \\ \frac{\partial \phi}{\partial \nu} = 0 & \text{on } \partial \Omega. \end{cases}$$

If $\int_{\Omega} a < 0$, there exists a unique positive principal eigenvalue $\mu_1(a)$, which is simple and possesses the eigenfunction $\phi_1 = \phi_1(a) \gg 0$ such that $\int_{\Omega} \phi_1^2 = 1$.

So, when $\mu_1(a) = 1$, (\mathcal{P}) has the trivial line $(q, u) = (1, t\phi_1)$:

$$\begin{cases} -\Delta \phi_1 = a(x)\phi_1 & \text{in } \Omega, \\ \frac{\partial \phi_1}{\partial \nu} = 0 & \text{on } \partial \Omega. \end{cases}$$

Main result 1

Put

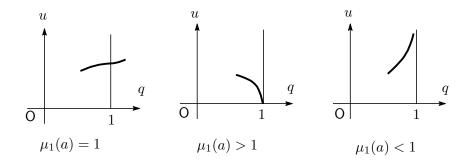
$$t_* := \exp\left[-\frac{\int_{\Omega} a(x)\phi_1^2 \log \phi_1}{\int_{\Omega} a(x)\phi_1^2}\right]$$

Theorem 1. Assume $\int_{\Omega} a < 0$. Then, (\mathcal{P}) has a solution $u_q \gg 0$ for $q \in (q_0, 1)$ for some $q_0 \in [0, 1)$. Moreover, as $q \to 1^-$,

$$\begin{cases} u_q \longrightarrow t_* \phi_1 & \text{in } C^1(\overline{\Omega}) & \text{if } \mu_1(a) = 1, \\ \|u_q\|_{C^1(\overline{\Omega})} \longrightarrow 0 & \text{if } \mu_1(a) > 1, \\ \min_{\overline{\Omega}} u_q \longrightarrow \infty & \text{if } \mu_1(a) < 1. \end{cases}$$

Corollary 2. Let q_0 as in Theorem 1, and let $q \in (q_0, 1)$. Then, (\mathcal{P}) has a solution $u \gg 0$ iff $\int_{\Omega} a < 0$.

Local bifurcation diagrams



We next investigate the global structure of the positive solutions set $\{(q,u): u>0\}.$

q's sets \mathcal{A}, \mathcal{I}

Under $\int_{\Omega} a < 0$, introduce

 $\mathcal{A} := \{ q \in (0,1) : u \gg 0 \text{ for any solution } u > 0 \text{ of } (\mathcal{P}) \},$

 $\mathcal{I} := \{q \in (0,1) : (\mathcal{P}) \text{ has a solution } u \gg 0\} \quad (\implies (q_0,1) \subseteq \mathcal{I} \)$

Then, we see $\mathcal{A} \subseteq \mathcal{I}$, since (\mathcal{P}) has a solution u > 0 for every $q \in (0,1)$ (BPT), and $q \in \mathcal{A}$ implies $u \gg 0$. In particular, $q \in \mathcal{A}$ implies that a solution u > 0 is unique.

Q: Can we characterize the sets \mathcal{A}, \mathcal{I} ?

Let us introduce the condition

(A.1)
$$\Omega_+ = \bigcup_{k=1}^m \Omega_{+,k}$$
, where $\Omega_{+,k}$ is connected.

Main result 2

Theorem 3. Assume $\int_{\Omega} a < 0$. Then, the following three assertions hold:

(i)
$$\mathcal{I} = (q_1, 1)$$
 for some $q_1 \in [0, q_0]$.

(ii) Assume additionally (A.1). Then,

$$\mathcal{A} = (q_2, 1)$$
 for some $q_2 \in [q_1, 1)$.

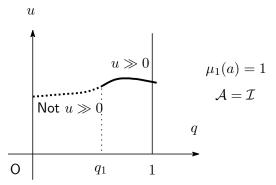
(iii) Assume additionally that Ω_+ is connected and $\partial\Omega_+$ is smooth. Then

$$\mathcal{A} = \mathcal{I}, \quad \textit{i.e.}, \quad q_1 = q_2.$$

The next figure may illustrate the situation (iii):

Global bifurcation diagrams 1

Case Ω_+ is connected and $\partial \Omega_+$ is smooth (single component case):



Indeed, since a solution u > 0 satisfies u > 0 in Ω_+ , it is unique for every $q \in (0, 1)$, which follows from the uniqueness result by BPT:

Positivity and uniqueness results from BPT (Math. Z., 1988)

• For each k, any solution u > 0 of (\mathcal{P}) satisfies

either
$$u \equiv 0$$
 or $u > 0$ in $\Omega_{+,k}$, (Lemma 2.2).

• Assume (A.1) holds and $\partial \Omega_+$ is smooth. Then, for any $J \subset \{1, 2, 3, \ldots, m\}$, (\mathcal{P}) has at most one solution u > 0 which satisfies

$$\begin{split} u &> 0 \quad \text{in} \quad \Omega_{+,J} := \bigcup_{k \in J} \Omega_{+,k}, \\ u &\equiv 0 \quad \text{in} \quad \Omega_{+} \setminus \Omega_{+,J}, \end{split}$$

(Theorem 3.1).

Asymptotic behavior as $q \rightarrow 0^-$

Lemma 4. Assume $\int_{\Omega} a < 0$ and (A.1). Then we have $C, \overline{q} \in (0, 1)$ such that

 $C \le \|u\|_{\infty} \le C^{-1}$

for all solution u > 0 of (\mathcal{P}) for $q \in (0, \overline{q})$.

Under $\int_{\Omega} a < 0$ and (A.1), we take a solution $u_n > 0$ of (\mathcal{P}) for $q = q_n \to 0^+$. By elliptic regularity, we have, up to a subsequence, $u_n \to u_0 \ge 0$ in $C^1(\overline{\Omega})$, and Lemma 4 shows $u_0 > 0$. Then, we obtain

- u_0 is not a solution of the limiting problem (\mathcal{P}) with q = 0.
- u_0 possesses a dead core D_0 with positive measure in Ω .
- If we additionally assume Ω_+ is connected, then $u_0 > 0$ in Ω_+ and so, $D_0 \subset \Omega \setminus \Omega_+$.

Sketch of proof of Theorem 3 (ii)

Under (A.1) we prove $\mathcal{A} = (q_2, 1)$. Let Ω' be a subdomain of Ω_+ . Consider the smallest eigenvalue $\lambda_1(a, \Omega')$ of

$$-\Delta \varphi = \lambda a^+ \varphi \ \, \text{in} \ \, \Omega', \quad \varphi|_{\partial \Omega'} = 0,$$

and let φ_1 be the corresponding positive eigenfunction such that $\|\varphi_1\|_\infty=1.$

Lemma 5. Assume a domain $D \subseteq \Omega'$ and $\lambda_1(a, D) < 1$. Then, $u \geq \varphi_1$ in D for all nontrivial functions $u \geq 0$ such that $-\Delta u = au^q$ in Ω' with $q \in (0, 1)$.

Lemma 6. Assume (A.1), and $\lambda_1(a, \Omega_{+,k}) < 1$ for any $k = 1, 2, \ldots, m$. Then we have $||u||_{H^1(\Omega)} \ge C$ for all solutions u > 0 of (\mathcal{P}) with $q \in (0, 1)$.

Remark 7. By replacing a by ca with c > 0 large, the condition $\lambda_1(a, \Omega_{+,k}) < 1$ is achieved.

(continued)

Assume $q_n \to 1^-$ and a solution $u_n > 0$ of (\mathcal{P}) for $q = q_n$ such that it does *not* satisfy $u_n \gg 0$. If $\{u_n\}$ is bounded in $H^1(\Omega)$, then up to a subsequence, $u_n \rightharpoonup u_0$ in $H^1(\Omega)$, $u_n \rightarrow u_0$ in $L^p(\Omega)$ with $p < 2^*$, and $u_n \rightarrow u_0$ a.e. From

$$\int_{\Omega} \nabla u_n \nabla (u_n - u_0) = \int_{\Omega} a(x) u_n^{q_n} (u_n - u_0) \longrightarrow 0,$$

we infer that $u_n \to u_0$ in $H^1(\Omega)$, and thus, $u_n \to u_0$ in $C^1(\overline{\Omega})$. By Lemma 6, we have $u_0 > 0$, which is a positive solution of

$$-\Delta u_0 = a u_0 \text{ in } \Omega, \quad \frac{\partial u_0}{\partial \nu} = 0 \text{ on } \partial \Omega.$$

We now get $u_0 \gg 0$, and then, $u_n \gg 0$ for n large, a contradiction.

If $\{u_n\}$ is unbounded, then we put $v_n := u_n/||u_n||_{H^1(\Omega)}$, and then, a similar argument is carried out to deduce a contradiction, $z_n = v_0$

K.Umezu (Ibaraki Univ.)

(continued)

We have obtained $(q,1)\subset \mathcal{A}$ and can prove \mathcal{A} is open in a similar argument.

Finally, we prove \mathcal{A} is connected.

Lemma 8. If
$$q_0 \in \mathcal{A}$$
 then $\left(q_0, \frac{1}{2-q_0}\right) \subseteq \mathcal{A}$.

Based on Lemma 8, the following iteration scheme is employed: Set q_n such that

$$(q_{n-1}, q_n] \subseteq \left(q_{n-1}, \frac{1}{2-q_{n-1}}\right) \subseteq \mathcal{A},$$

 $q_n := \frac{1}{2-q_{n-1}} - \frac{1}{10} \left(\frac{1}{2-q_{n-1}} - q_{n-1}\right), \quad n \ge 1.$

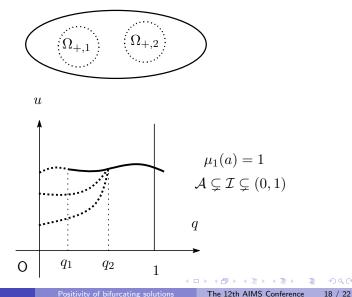
Since $q_n \nearrow q \leq 1$, passing to the limit we deduce

$$q = \frac{1}{2-q} - \frac{1}{10} \left(\frac{1}{2-q} - q \right),$$

$$\therefore \quad q = 1, \quad \text{as desired.}$$

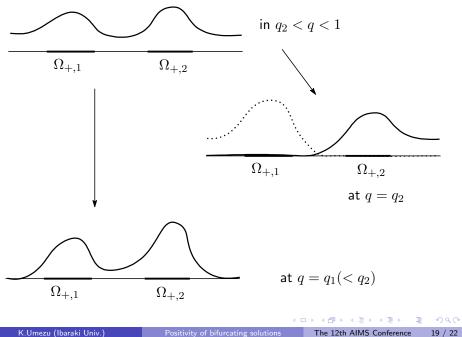
17 / 22

Global bifurcation diagrams 2 (expectation) Case $\Omega_{+} = \Omega_{+,1} \cup \Omega_{+,2}$ (two component case):



K.Umezu (Ibaraki Univ.)

The 12th AIMS Conference



Remarks on \mathcal{A}, \mathcal{I}

Remark 9.

(i) There exists $a \in C(\overline{\Omega})$ such that $\mathcal{A} \subsetneq \mathcal{I}$. More precisely, let $\Omega := (x_0, x_1) \subset \mathbb{R}$. Then, for any $q \in (0, 1)$ there exists $a \in C(\overline{\Omega})$ such that $q \in \mathcal{I} \setminus \mathcal{A}$.

(ii) Consider

$$(\mathcal{P}_{\varepsilon}) \qquad \begin{cases} -\Delta u = (a(x) - \varepsilon)u^q & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial\Omega, \end{cases}$$

where $\int_{\Omega} a = 0$ (consequently, $a - \varepsilon$ changes sign and $\int_{\Omega} (a - \varepsilon) < 0$). Then, for $\varepsilon \to 0^+$ we can choose $q_{\varepsilon} \to 0^+$ such that $\mathcal{I}_{\varepsilon} = (q_{\varepsilon}, 1)$.

References

- U. Kaufmann, H. Ramos Quoirin, K. Umezu, Positivity results for indefinite sublinear elliptic problems via a continuity argument, *J. Differential Equations*, **263**(8), (2017), 4481–4502.
- [2] U. Kaufmann, H. Ramos Quoirin, K. Umezu, Positive solutions of an elliptic Neumann problem with a sublinear indefinite nonlinearity, *NoDEA*, (2018) 25:12.
- [3] U. Kaufmann, H. Ramos Quoirin, K. Umezu, A curve of positive solutions for an indefinite sublinear Dirichlet problem, (2018). arXiv:1709.04822

Thank you for your kind attention.

э